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Exercise 0.1.
Consider Laplace’s equation
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tions
u(r,0) =0, 0<r<a,
u(r,m) =0, 0<r<a,
u(a,d) =sinf, 0<0 <,

lu(r,0)| < 0o as r— 0%,

Solve this problem using separation of variables.

in a semi-circular disk of radius a centered at the origin with boundary condi-

Solution to Exercise 0.1: Assuming a solution of the form wu(r,0) = R(r)

separating variables, we have the following problems for R and ¢ :

r(rRY +AR=0, 0<r<a, O+ Ap=0, 0<0<m,
|R(0)] < oo, ¢(0) =0,
o(m) = 0.

- p(0), and

We solve the #-problem first. The eigenvalues and corresponding eigenfunctions are

Ap =1 and on(x) = sinnd

forn > 1.
The corresponding r-equation is the Cauchy-Euler equation

r”R"+rR —n*R =0,

with general solution
R<T) =A™ + Bpr™"



for n > 1. The boundedness condition |R(0)| < oo requires that B,, = 0, so that
R.(r) = A"

forn > 1.
Using the superposition principle, we write

(o)
0) = Z Ap,r"sinnd
n=1
for 0 <r <a, 0 <0 <7, and from the boundary condition we want

sinf = u(a, 0) ZA@ sin nd.

From the orthogonality of the eigenfunctions on the interval [0, 7], we have
aA; =1 and A,=0,n>2,

so the solution is .
u(r,0) = — sind
a

for0<r<a, 0<0<m.

Exercise 0.2. g

Assume that f(x) is absolutely integrable and a is a given real constant. Show
that

-~

JF (ei“xf(x)) (w) = f(w—a).

Solution to Exercise 0.2: Since || = 1 and [ is absolutely integrable on (—oo, 00),
then €' f(x) is also absolutely integrable on (—oo, 00) and we have

F (e (@) @) = 5- / e ) o

for all w € R.



Exercise 0.3. g

Assume that f”(t) is absolutely integrable and

lim f(t£) =0  and lim f'(t) = 0.

t—o00 t—00

Show that 9
Fo (f") () = —*F (f) (w) + —wf(0).

Solution of 0.3: Assuming that tlim f(t) =0, and 1tlim f'(t) = 0, and integrating by parts
—00 —00

we have

Fs (f") (w) = %/0 f(t) sinwt dt
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f'(t) sinw
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— —w/ f'(t) cos wt dt
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:——w/ f(t) cos wt dt
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= ——w f(t) coswt
m
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+ —w2/ f(t)sinwt dt
T 0

0

2
= 20 1(0) - @F () (@)
We used the fact that
|f (t)sinwt| < |f'(t)] — 0 as ¢t — oo,

and

|f(t)coswt| < |f(t)] — 0 as ¢ — oc.



Exercise 0.4. XX

Let
CoS T lz| <,
€Tr) =
i@ { 0 |z| > 7.

(a) Find the Fourier integral of f.
(b) For which values of x does the integral converge to f(z)?

(c) Evaluate the integral

d\

/°° Asin A cos Az
0 1— )2

for —oc0 < z < 0.

Solution to 0.4:

(a) The Fourier integral representation of f is given by
f(zx) ~ / [A(X) cos Az + B(A)sin Az] d\, —oo0 <z < 00
0
where
1 [~ 1 [~ )
AN = —/ f(t)cosAtdt  and  B(\) = —/ f(t)sin At dt
T J_—co T J -0

for A > 0.
Since f(t) is an even function on the interval —oo < ¢t < oo, then B(A) = 0 for all
A >0, and

2

A()\)—l/oo f(t)cos/\tdt——/Oof(t)cos/\tdt
T J oo 7 Jo

for all A > 0.



Now, for A # 1, we have

W+sin(1—)\t "
o m(1=2X)

0

sin(14+ M7 sin(l — M7
(1+X) m(1—A)
sin A7 sin A\

TSR Y

2Xsin A
(1 —\2)’

that is,
B 2 sin A

() = (1 — \2)
for A >0, A\ # 1.

Now, for A = 1, we have

™

2 [T 2 ™1 1 1 1
A(l):—/ COS2tdt:—/ —[1 4 cos2t] dt = — |t + = sin2t =—-1=1

T Jo T™Jo 2 T 2 o T

Therefore o) i\
Sl—n: for A>0, N#1
AN = (1 =A%)
1 for A=1.

Since f(z) is continuous for all x # £, then from Dirichlet’s theorem, the Fourier

integral representation converges to f(x) for all such x, that is,

© 9\sin AT cos x for |z| <

f(z) :/ A()N) cos Az dA :/ ——————~cos Az d\ =
0 o m(1—A) 0 for |z| > .

for all = # +m.

When z = 4+, from Dirichlet’s theorem the Fourier integral representation converges
to
f(r)+ f(m77) 0-1 1 fl=nt)+ f(=n7) —-1+0 1

= =—= and = ——.

2 2 2 2 2 2




(c) From part (b) above, we have

B coS T for |z| <7
/ Asin A7 cos Az Dy — 0 for |z| >
0 1= A2
_% for |z|=.
Exercise 0.5. X

Besides linear equations, some nonlinear equations can also result in traveling
wave solutions of the form

u(z,t) = ¢p(x — ct).

Fisher’s equation , which models the spread of an advantageous gene in a pop-
ulation, where u(z,t) is the density of the gene in the population at time ¢ and
location x, is given by

ou  0*u

— = — +u(l —u).

ot 0z ( )
Show that Fisher’s equation has a solution of this form if ¢ satisfies the non-
linear ordinary differential equation

¢" +cd' + (1 —¢) =0.

Solution to Exercise 0.5: If u(z,t) = ¢(x — ct), then

ou

g = Y=t
9%u ”
gz = @)
0 ,

a_?; = —c¢ (JI - Ct)a

and Fisher’s equation becomes
—cg/(@ — ct) = ¢'(x — ct) + Bl — ct) (1 = $lx — b))

for all x and t, so that if ¢ satisfies the nonlinear ordinary differential equation
¢"(s) +c¢'(s) + ¢(s)(1 — ¢(s)) =0, —o0 <s< o0,

then u(x,t) = ¢(x — ct) is a traveling wave solution to Fisher’s equation.



