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Math 337, Summer 2010

Assignment 5

Dr. T Hillen, University of Alberta

Exercise 0.1.
Consider Laplace’s equation

1

r

∂

∂r

�
r
∂u

∂r

�
+

1

r2
∂2u

∂θ2
= 0

in a semi-circular disk of radius a centered at the origin with boundary condi-

tions

u(r, 0) = 0, 0 < r � a,

u(r, π) = 0, 0 < r � a,

u(a, θ) = sin θ, 0 � θ � π,

|u(r, θ)| < ∞ as r → 0
+.

Solve this problem using separation of variables.

Solution to Exercise 0.1: Assuming a solution of the form u(r, θ) = R(r) · ϕ(θ), and

separating variables, we have the following problems for R and ϕ :

r(rR�
)
�
+ λR = 0, 0 < r � a, ϕ��

+ λϕ = 0, 0 � θ � π,

|R(0)| < ∞, ϕ(0) = 0,

ϕ(π) = 0.

We solve the θ-problem first. The eigenvalues and corresponding eigenfunctions are

λn = n2
and ϕn(x) = sinnθ

for n � 1.
The corresponding r-equation is the Cauchy-Euler equation

r2R��
+ rR� − n2R = 0,

with general solution

R(r) = Anr
n
+Bnr

−n
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for n � 1. The boundedness condition |R(0)| < ∞ requires that Bn = 0, so that

Rn(r) = Anr
n

for n � 1.
Using the superposition principle, we write

u(r, θ) =
∞�

n=1

Anr
n
sinnθ

for 0 < r � a, 0 � θ � π, and from the boundary condition we want

sin θ = u(a, θ) =
∞�

n=1

Ana
n
sinnθ.

From the orthogonality of the eigenfunctions on the interval [0, π], we have

aA1 = 1 and An = 0, n � 2,

so the solution is

u(r, θ) =
r

a
sin θ

for 0 � r � a, 0 � θ � π.

Exercise 0.2.
Assume that f(x) is absolutely integrable and a is a given real constant. Show

that

F
�
eiaxf(x)

�
(ω) = �f(ω − a).

Solution to Exercise 0.2: Since |eiax| = 1 and f is absolutely integrable on (−∞,∞),
then eiaxf(x) is also absolutely integrable on (−∞,∞) and we have

F
�
eiaxf(x)

�
(ω) =

1

2π

� ∞

−∞
eiaxf(x)e−iωx dx

=
1

2π

� ∞

−∞
f(x)e−i(ω−a)x dx

= �f(ω − a)

for all ω ∈ R.
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Exercise 0.3.
Assume that f ��

(t) is absolutely integrable and

lim
t→∞

f(t) = 0 and lim
t→∞

f �
(t) = 0.

Show that

Fs (f
��
) (ω) = −ω2Fs (f) (ω) +

2

π
ωf(0).

Solution of 0.3: Assuming that lim
t→∞

f(t) = 0, and lim
t→∞

f �
(t) = 0, and integrating by parts

we have

Fs (f
��
) (ω) =

2

π

� ∞

0

f ��
(t) sinωt dt

=
2

π
f �
(t) sinωt

����
∞

0

− 2

π
ω

� ∞

0

f �
(t) cosωt dt

= − 2

π
ω

� ∞

0

f �
(t) cosωt dt

= − 2

π
ω f(t) cosωt

����
∞

0

+
2

π
ω2

� ∞

0

f(t) sinωt dt

=
2

π
ω f(0)− ω2Fs (f) (ω).

We used the fact that

|f �
(t) sinωt| � |f �

(t)| −→ 0 as t → ∞,

and

|f(t) cosωt| � |f(t)| −→ 0 as t → ∞.
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Exercise 0.4.
Let

f(x) =

�
cos x |x| < π,

0 |x| > π.

(a) Find the Fourier integral of f.

(b) For which values of x does the integral converge to f(x)?

(c) Evaluate the integral

� ∞

0

λ sinλπ cosλx

1− λ2
dλ

for −∞ < x < ∞.

Solution to 0.4:

(a) The Fourier integral representation of f is given by

f(x) ∼
� ∞

0

[A(λ) cosλx+B(λ) sinλx] dλ, −∞ < x < ∞

where

A(λ) =
1

π

� ∞

−∞
f(t) cosλt dt and B(λ) =

1

π

� ∞

−∞
f(t) sinλt dt

for λ � 0.

Since f(t) is an even function on the interval −∞ < t < ∞, then B(λ) = 0 for all

λ � 0, and

A(λ) =
1

π

� ∞

−∞
f(t) cosλt dt =

2

π

� ∞

0

f(t) cosλt dt

for all λ � 0.



5

Now, for λ �= 1, we have

A(λ) =
2

π

� π

0

cos t cosλt dt

=
2

π

� π

0

1

2
[cos(1 + λ)t+ cos(1− λ)t] dt

=
sin(1 + λ)t

π(1 + λ)

����
π

0

+
sin(1− λ)t

π(1− λ)

����
π

0

=
sin(1 + λ)π

π(1 + λ)
+

sin(1− λ)π

π(1− λ)

= − sinλπ

π(1 + λ)
+

sinλπ

π(1− λ)

=
2λ sinλπ

π(1− λ2)
,

that is,

A(λ) =
2λ sinλπ

π(1− λ2)

for λ � 0, λ �= 1.

Now, for λ = 1, we have

A(1) =
2

π

� π

0

cos
2 t dt =

2

π

� π

0

1

2
[1 + cos 2t] dt =

1

π

�
t+

1

2
sin 2t

� ����
π

0

=
1

π
· π = 1.

Therefore

A(λ) =






2λ sinλπ

π(1− λ2)
for λ � 0, λ �= 1

1 for λ = 1.

(b) Since f(x) is continuous for all x �= ±π, then from Dirichlet’s theorem, the Fourier

integral representation converges to f(x) for all such x, that is,

f(x) =

� ∞

0

A(λ) cosλx dλ =

� ∞

0

2λ sinλπ

π(1− λ2)
cosλx dλ =





cos x for |x| < π

0 for |x| > π.

for all x �= ±π.

When x = ±π, from Dirichlet’s theorem the Fourier integral representation converges

to

f(π+
) + f(π−

)

2
=

0− 1

2
= −1

2
and

f(−π+
) + f(−π−

)

2
=

−1 + 0

2
= −1

2
.
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(c) From part (b) above, we have

� ∞

0

λ sinλπ cosλx

1− λ2
dλ =






π

2
cos x for |x| < π

0 for |x| > π

−π

4
for |x| = π.

Exercise 0.5.
Besides linear equations, some nonlinear equations can also result in traveling
wave solutions of the form

u(x, t) = φ(x− ct).

Fisher’s equation , which models the spread of an advantageous gene in a pop-

ulation, where u(x, t) is the density of the gene in the population at time t and
location x, is given by

∂u

∂t
=

∂2u

∂x2
+ u(1− u).

Show that Fisher’s equation has a solution of this form if φ satisfies the non-

linear ordinary differential equation

φ��
+ cφ�

+ φ(1− φ) = 0.

Solution to Exercise 0.5: If u(x, t) = φ(x− ct), then

∂u

∂x
= φ�

(x− ct)

∂2u

∂x2
= φ��

(x− ct)

∂u

∂t
= −cφ�

(x− ct),

and Fisher’s equation becomes

−cφ�
(x− ct) = φ��

(x− ct) + φ(x− ct) (1− φ(x− ct)) ,

for all x and t, so that if φ satisfies the nonlinear ordinary differential equation

φ��
(s) + cφ�

(s) + φ(s)(1− φ(s)) = 0, −∞ < s < ∞,

then u(x, t) = φ(x− ct) is a traveling wave solution to Fisher’s equation.


