Math 337, Summer 2010
 Assignment 4

Dr. T Hillen, University of Alberta

Exercise 0.1.

The neutron flux u in a sphere of uranium obeys the differential equation

$$
\frac{\lambda}{3} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)+(k-1) A u=0
$$

for $0<r<a$, where λ is the effective distance traveled by a neutron between collisions, A is called the absorption cross section, and k is the number of neutrons produced by a collision during fission. In addition, the neutron flux at the boundary of the sphere is 0 .
(a) Make the substitution

$$
u=\frac{v}{r} \quad \text { and } \quad \mu^{2}=\frac{3(k-1) A}{\lambda}
$$

and show that $v(r)$ satisfies $\frac{d^{2} v}{d r^{2}}+\mu^{2} v=0,0<r<a$.
(b) Find the general solution to the differential equation in part (a) and then find $u(r)$ that satisfies the boundary condition and boundedness condition:

$$
u(a)=0 \quad \text { and } \quad \lim _{r \rightarrow 0^{+}}|u(r)| \quad \text { bounded }
$$

(c) Find the critical radius, that is, the smallest radius a for which the solution is not identically 0 .

Solution to Exercise 0.1:

(a) Letting $u=v / r$, then

$$
\frac{d u}{d r}=\frac{1}{r} \frac{d v}{d r}-\frac{1}{r^{2}} v \quad \text { and } \quad r^{2} \frac{d u}{d r}=r \frac{d v}{d r}-v
$$

so that

$$
\frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=r \frac{d^{2} v}{d r^{2}}+\frac{d v}{d r}-\frac{d v}{d r}=r \frac{d^{2} v}{d r^{2}}
$$

and the differential equation for $v(r)$ is

$$
\frac{1}{r} \frac{d^{2} v}{d r^{2}}+\frac{\mu^{2}}{r} v=0, \quad \text { that is, } \quad \frac{d^{2} v}{d r^{2}}+\mu^{2} v=0
$$

for $0<r<a$.
(b) The general solution to the differential equation in part (a) is

$$
v(r)=c_{1} \cos \mu r+c_{2} \sin \mu r
$$

for $0<r<a$, and the solution to the neutron flux equation is

$$
u(r)=\frac{v(r)}{r}=c_{1} \frac{\cos \mu r}{r}+c_{2} \frac{\sin \mu r}{r}
$$

for $0<r<a$. Applying the boundedness condition, since

$$
\lim _{r \rightarrow 0^{+}} \frac{\sin \mu r}{r}=\mu \quad \text { and } \quad \lim _{r \rightarrow 0^{+}} \frac{\cos \mu r}{r} \quad \text { doesn't exist, }
$$

then we need $c_{1}=0$, and the solution is

$$
u(r)=c_{2} \frac{\sin \mu r}{r}
$$

for $0<r<a$.
(c) Applying the boundary condition

$$
u(a)=\frac{c_{2}}{a} \sin \mu a=0
$$

clearly, there is a nontrivial solution if and only if $\mu a=n \pi$ for some positive integer n. The critical radius is $a=\frac{\pi}{\mu}$.

Exercise 0.2.

Solve Laplace's equation in the square $0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \pi$ with the boundary conditions given below

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leqslant x \leqslant \pi, \quad 0 \leqslant y \leqslant \pi \\
u(0, y)=0, \quad 0 \leqslant y \leqslant \pi \\
u(\pi, y)=0, \quad 0 \leqslant y \leqslant \pi \\
u(x, 0)=0, \quad 0 \leqslant x \leqslant \pi \\
u(x, \pi)=1, \quad 0 \leqslant x \leqslant \pi
\end{aligned}
$$

Solution to Exercise 0.2: We use separation of variables and assume a solution to Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

of the form $u(x, y)=X(x) \cdot Y(y)$.
Separating variables we have

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(t)}{Y(t)}=-\lambda
$$

and we obtain the two ordinary differential equations

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0 & 0 \leqslant x \leqslant \pi & Y^{\prime \prime}-\lambda Y=0, \quad 0 \leqslant y \leqslant \pi \\
X(0) & =0 & Y(0)=0 \\
X(\pi) & =0 . & &
\end{array}
$$

Solving the complete boundary value problem for X, the eigenvalues and eigenfunctions are given by

$$
\lambda_{n}=n^{2} \quad \text { and } \quad X_{n}(x)=\sin n x
$$

for $n \geqslant 1$.
The corresponding problem for Y is

$$
\begin{array}{r}
Y^{\prime \prime}-n^{2} Y=0 \\
Y(0)=0
\end{array}
$$

with solutions

$$
Y_{n}(y)=\sinh n y
$$

for $n \geqslant 1$.
From the superposition principle, we write

$$
u(x, y)=\sum_{n=1}^{\infty} b_{n} \sinh n y \sin n x
$$

and setting $y=\pi$, we need

$$
1=u(x, \pi)=\sum_{n=1}^{\infty} b_{n} \sinh n \pi \sin n x,
$$

and from the orthogonality of the eigenfunctions,

$$
b_{n} \sinh n \pi=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x=-\left.\frac{2}{n \pi} \cos n x\right|_{0} ^{\pi}=-\frac{2}{n \pi}\left[(-1)^{n}-1\right]
$$

so that

$$
u(x, y)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\left[1-(-1)^{n}\right]}{n \sinh n \pi} \sin n x \sinh n y
$$

for $0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \pi$.

Exercise 0.3.

Consider the regular Sturm-Liouville problem

$$
\begin{aligned}
& \varphi^{\prime \prime}(x)+\lambda \varphi(x)=0, \quad 0 \leqslant x \leqslant 1 \\
& \varphi(0)=0 \\
& \varphi(1)-h \varphi^{\prime}(1)=0
\end{aligned}
$$

where $h>0$.
Show that there is a single negative eigenvalue λ_{0} if and only if $h<1$. Find λ_{0} and the corresponding eigenfunction $\varphi_{0}(x)$.
Hint: Assume $\lambda=-\mu^{2}$ for some real number $\mu \neq 0$.
Solution to Exercise 0.3: Following the hint, the differential equation becomes

$$
\varphi^{\prime \prime}(x)-\mu^{2} \varphi(x)=0
$$

with general solution

$$
\varphi(x)=A \cosh \mu x+B \sinh \mu x
$$

for $0 \leqslant x \leqslant 1$.
Applying the first boundary condition, we have

$$
\varphi(0)=A=0
$$

so that

$$
\varphi(x)=B \sinh \mu x \quad \text { with } \quad \varphi^{\prime}(x)=\mu B \cosh \mu x
$$

Applying the second boundary condition, we have

$$
\varphi(1)-h \varphi^{\prime}(1)=B[\sinh \mu-h \mu \cosh \mu]=0
$$

so that

$$
B \cosh \mu[\tanh \mu-h \mu]=0,
$$

and we have a nontrivial solution if and only if

$$
\tanh \mu=h \mu
$$

for some $\mu \neq 0$.
However, the graphs of $y=\tanh \mu$ and $y=h \mu$ intersect only at $\mu=0$ if $h \geqslant 1$, and they intersect at exactly one positive value μ_{0} if $0<h<1$.
Therefore, there is exactly one negative eigenvalue for this Sturm-Liouville problem if and only if $0<h<1$, and the eigenvalue is

$$
\lambda_{0}=-\mu_{0}^{2}
$$

where μ_{0} is the positive root of the equation $\tanh \mu=h \mu$. The corresponding eigenfunction is

$$
\varphi_{0}(x)=\sinh \mu_{0} x
$$

for $0 \leqslant x \leqslant 1$.

Exercise 0.4.

Legendre's differential equation reads

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-1<x<1
$$

(a) Write the differential equation in Sturm-Liouville form. Decide if the resulting Sturm-Liouville problem is regular or singular.
(b) Show that the first four Legendre polynomials

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)
$$

are eigenfunctions of the Sturm-Liouville problem and find the corresponding eigenvalues.
(c) Use an appropriate weight function and show that P_{1} and P_{2} are orthogonal on the interval $(-1,1)$ with respect to this weight function.

Solution to 0.4 :

(a) Since

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d y}{d x}\right)=\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}
$$

Legendre's equation can be written as

$$
\begin{equation*}
\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0, \quad-1<x<1, \tag{*}
\end{equation*}
$$

which is the classical Sturm-Liouville form

$$
\left[p(x) y^{\prime}\right]^{\prime}+[q(x)+\lambda r(x)] y=0, \quad a<x<b
$$

with

$$
p(x)=1-x^{2}, \quad q(x)=0, \quad \text { and } \quad r(x)=1
$$

for $a<x<b$, where $a=-1$ and $b=1$.
For a regular Sturm-Liouville problem we require the regularity conditions:

$$
p(x), \quad p^{\prime}(x), \quad q(x), \quad \text { and } \quad r(x)
$$

are continuous on the closed interval $a \leqslant x \leqslant b$, and

$$
p(x)>0 \quad \text { and } \quad r(x)>0
$$

for $a \leqslant x \leqslant b$.
We also require the boundary conditions

$$
c_{1} y(a)+c_{2} y^{\prime}(a)=0 \quad \text { and } \quad d_{1} y(b)+d_{2} y^{\prime}(b)=0
$$

where at least one of c_{1} and c_{2} is nonzero and at least one of d_{1} and d_{2} is nonzero.
Thus, it is clear that $(*)$ is a singular Sturm-Liouville problem (no matter what the boundary conditions are) since one of the regularity conditions is violated, namely, $p(-1)=p(1)=0$.
(b) For $P_{0}(x)=1$, we have

$$
P_{0}^{\prime}(x)=0 \quad \text { and } \quad P_{0}^{\prime \prime}(x)=0
$$

for $-1<x<1$, so that

$$
\left(1-x^{2}\right) P_{0}^{\prime \prime}-2 x P_{0}^{\prime}+\lambda P_{0}=0, \quad-1<x<1
$$

is satisfied for $\lambda=0$, and the eigenvalue corresponding to the eigenfunction $P_{0}(x)=1$ is $\lambda_{0}=0$.
For $P_{1}(x)=x$, we have

$$
P_{1}^{\prime}(x)=1 \quad \text { and } \quad P_{1}^{\prime \prime}(x)=0
$$

for $-1<x<1$, so that

$$
\left(1-x^{2}\right) P_{1}^{\prime \prime}-2 x P_{1}^{\prime}+\lambda P_{1}=0, \quad-1<x<1
$$

becomes

$$
-2 x \cdot 1+\lambda x=0, \quad-1<x<1
$$

which is satisfied for $\lambda=2$, and the eigenvalue corresponding to the eigenfunction $P_{1}(x)=x$ is $\lambda_{1}=2$.
For $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, we have

$$
P_{2}^{\prime}(x)=3 x \quad \text { and } \quad P_{2}^{\prime \prime}(x)=3
$$

for $-1<x<1$, so that

$$
\left(1-x^{2}\right) P_{2}^{\prime \prime}-2 x P_{2}^{\prime}+\lambda P_{2}=0, \quad-1<x<1
$$

becomes

$$
3\left(1-x^{2}\right)-6 x^{2}+\frac{\lambda}{2}\left(3 x^{2}-1\right)=0, \quad-1<x<1
$$

that is,

$$
-3\left(3 x^{2}-1\right)+\frac{\lambda}{2}\left(3 x^{2}-1\right)=0, \quad-1<x<1
$$

which is satisfied for $\lambda=6$, and the eigenvalue corresponding to the eigenfunction $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$ is $\lambda_{2}=6$.
For $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$, we have

$$
P_{3}^{\prime}(x)=\frac{1}{2}\left(15 x^{2}-3\right) \quad \text { and } \quad P_{3}^{\prime \prime}(x)=15 x
$$

for $-1<x<1$, so that

$$
\left(1-x^{2}\right) P_{3}^{\prime \prime}-2 x P_{3}^{\prime}+\lambda P_{3}=0, \quad-1<x<1
$$

becomes

$$
15 x\left(1-x^{2}\right)-\left(15 x^{3}-3 x\right)+\frac{\lambda}{2}\left(5 x^{3}-3 x\right)=0, \quad-1<x<1
$$

that is,

$$
-6\left(5 x^{3}-3 x\right)+\frac{\lambda}{2}\left(5 x^{3}-3 x\right)=0, \quad-1<x<1
$$

which is satisfied for $\lambda=12$, and the eigenvalue corresponding to the eigenfunction $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$ is $\lambda_{3}=12$.
(c) Using the weight function $w(x)=1$, for $-1<x<1$, we have

$$
\left\langle P_{1}, P_{2}\right\rangle=\int_{-1}^{1} P_{1}(x) \cdot P_{2}(x) d x=0
$$

since the product $P_{1}(x) P_{2}(x)$ is an odd function integrated between symmetric limits, thus $P_{1}(x)$ and $P_{2}(x)$ are orthogonal on the interval $-1<x<1$ with respect to the weight function $w(x)=1$.

Exercise 0.5.

Find the solution to Laplace's equation on the rectangle:

$$
\begin{array}{rlrl}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0, & & 0<x<a, \quad 0<y<b \\
u(0, y) & =1, & & 0<y<b \\
u(a, y) & =1, & 0<y<b \\
\frac{\partial u}{\partial y}(x, 0) & =0, \quad 0<x<a \\
\frac{\partial u}{\partial y}(x, b) & =0, & & 0<x<a
\end{array}
$$

using the method of separation of variables. Is your solution what you expected?

Solution to Exercise 0.5: Writing $u(x, y)=X(x) Y(y)$ we obtain

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda^{2} \quad(\text { constant })
$$

and hence the two ordinary differential equations

$$
\begin{aligned}
X^{\prime \prime}-\lambda^{2} X=0 \quad \text { and } \quad Y^{\prime \prime}+\lambda^{2} Y & =0 \quad 0<y<b \\
Y^{\prime}(0) & =0 \\
Y^{\prime}(b) & =0
\end{aligned}
$$

Solving the regular Sturm-Liouville problem for Y, for the eigenvalue $\lambda_{0}^{2}=0$ the corresponding eigenfunction is

$$
Y_{0}(y)=1,
$$

and the corresponding solution to the first equation is

$$
X_{0}(x)=b_{0} x+a_{0} .
$$

For the eigenvalues $\lambda_{n}^{2}=\left(\frac{n \pi}{b}\right)^{2}$, the corresponding eigenfunctions are

$$
Y_{n}(y)=\cos \lambda_{n} y
$$

and the corresponding solutions to the first equation are

$$
X_{n}(x)=a_{n} \cosh \lambda_{n} x+b_{n} \sinh \lambda_{n} x,
$$

for $n=1,2,3, \ldots$

Using the superposition principle, we write

$$
u(x, y)=b_{0} x+a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cosh \lambda_{n} x+b_{n} \sinh \lambda_{n} x\right) \cos \lambda_{n} y
$$

From the boundary condition $u(0, y)=1$, we have

$$
1=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \lambda_{n} y
$$

so that

$$
a_{0}=\frac{1}{b} \int_{0}^{b} 1 d y=1
$$

while

$$
a_{n}=\frac{2}{b} \int_{0}^{b} \cos \lambda_{n} y d y=\left.\frac{2}{n \pi} \sin \lambda_{n} y\right|_{0} ^{b}=0
$$

for $n=1,2,3, \ldots$
From the boundary condition $u(a, y)=1$, we have

$$
1=b_{0} a+1+\sum_{n=1}^{\infty} b_{n} \sinh \lambda_{n} a \cos \lambda_{n} y
$$

and integrating this equation from 0 to b we get $b_{0} a b=0$, and therefore $b_{0}=0$, so that

$$
0=\sum_{n=1}^{\infty} b_{n} \sinh \lambda_{n} a \cos \lambda_{n} y
$$

In order to evaluate the b_{n} 's, we multiply this equation by $\cos \frac{m \pi}{b} y$ and integrate from 0 to b, to obtain $b_{m} \sinh \frac{m \pi}{b} a=0$, that is, $b_{m}=0$ for $m=1,2,3, \ldots$.
Therefore the solution is $u(x, y)=1$, which is not totally unexpected, since the solution is unique and it is clear from the statement of the problem that $u(x, y)=1$ satisfies Laplace's equation on the rectangle and satisfies all of the boundary conditions.

