Math 337, Summer 2010

Assignment 3

Dr. T Hillen, University of Alberta

Exercise 0.1.
Find the values of λ^{2} for which the boundary value problem

$$
\begin{aligned}
\frac{d^{2} u}{d x^{2}}+\lambda^{2} u & =0, \quad 0<x<\frac{\pi}{2} \\
u(0) & =0 \\
\int_{0}^{\frac{\pi}{2}} u(t) d t & =0
\end{aligned}
$$

has nontrivial solutions.
Solution to Exercise 0.1: We consider two cases:
case (i): $\lambda=0$
In this case, the general solution to $\frac{d^{2} u}{d x^{2}}=0$ is given by $u(x)=A x+B$, and $u(0)=0$ implies that $B=0$, so that $u(x)=A x$.
The condition $\int_{0}^{\frac{\pi}{2}} u(t) d t=0$ implies that

$$
\int_{0}^{\frac{\pi}{2}} A t d t=\left.A \frac{t^{2}}{2}\right|_{0} ^{\frac{\pi}{2}}=A \frac{\pi^{2}}{8}=0
$$

which implies that $A=0$, and the boundary value problem has only the trivial solution in this case.
case (ii): $\lambda \neq 0$
In this case, the general solution to $\frac{d^{2} u}{d x^{2}}+\lambda^{2} u=0$ is given by $u(x)=A \cos \lambda x+B \sin \lambda x$, and $u(0)=0$ implies that $A=0$ so that $u(x)=B \sin \lambda x$.
The condition $\int_{0}^{\frac{\pi}{2}} u(t) d t=0$ implies that

$$
\int_{0}^{\frac{\pi}{2}} B \sin \lambda t d t=-\left.\frac{B}{\lambda} \cos \lambda t\right|_{0} ^{\frac{\pi}{2}}=\frac{B}{\lambda}\left(1-\cos \frac{\lambda \pi}{2}\right)=0
$$

and so either $B=0$ or $\cos \frac{\lambda \pi}{2}=1$.

Therefore, a nontrivial solution exists if and only if we have $\cos \frac{\lambda \pi}{2}=1$, that is, $\frac{\lambda \pi}{2}=2 \pi n$, where $n \neq 0$ is an integer. The values of λ^{2} for which the boundary value problem has non-trivial solutions are

$$
\lambda_{n}^{2}=16 n^{2}
$$

for $n=1,2,3, \ldots$.

Exercise 0.2.

Consider the following eigenvalue problem on the interval $[0,1]$:

$$
\begin{gathered}
u^{\prime \prime}(x)+2 u^{\prime}(x)-u(x)+\lambda(x+1)^{2} e^{-2 x} u(x)=0 \\
u^{\prime}(0)=0 \\
u^{\prime}(1)=0
\end{gathered}
$$

(a) Explain the meaning of eigenvalue problem.
(b) Show that this eigenvalue problem is not of Sturm-Liouville type.
(c) Multiply the above equation by $e^{2 x}$ to obtain a Sturm-Liouville problem. Identify $p(x), q(x)$, and $\sigma(x)$.
(d) Use the Rayleigh quotient to show that the leading eigenvalue is positive, that is, $\lambda_{1}>0$.
(e) Find an upper bound for the leading eigenvalue.

Solution to Exercise 0.2:

(a) The eigenvalue problem consists of finding the values of λ (eigenvalues) for which there are nontrivial solutions (eigenfunctions) satisfying both the differential equation and the boundary conditions.
(b) If the eigenvalue problem

$$
\begin{gathered}
u^{\prime \prime}(x)+2 u^{\prime}(x)-u(x)+\lambda(x+1)^{2} e^{-2 x} u(x)=0 \\
u^{\prime}(0)=0 \\
u^{\prime}(1)=0
\end{gathered}
$$

were of Sturm-Liouville form, then we would have

$$
u^{\prime \prime}+2 u^{\prime}=\left(p u^{\prime}\right)^{\prime}
$$

that is, $p(x)=1$ and $p^{\prime}(x)=2$, which is impossible.
(c) If we multiply the differential equation by $e^{2 x}$, then we have

$$
e^{2 x} u^{\prime \prime}+2 e^{2 x} u^{\prime}-e^{2 x} u+\lambda(x+1)^{2} u=0, \quad 0 \leqslant x \leqslant 1
$$

that is,

$$
\left(e^{2 x} u^{\prime}\right)^{\prime}-e^{2 x} u+\lambda(x+1)^{2} u=0, \quad 0 \leqslant x \leqslant 1
$$

which is of Sturm-Liouville type with $p(x)=e^{2 x}, q(x)=-e^{2 x}, \sigma(x)=(x+1)^{2}$ for $0 \leqslant x \leqslant 1$.
(d) The eigenvalue λ and corresponding eigenfunction u are related by the Rayleigh quotient:

$$
\lambda=R(u)=\frac{-\left.p(x) u(x) u^{\prime}(x)\right|_{0} ^{1}+\int_{0}^{1}\left[p(x) u^{\prime}(x)^{2}-q(x) u(x)^{2}\right] d x}{\int_{0}^{1} u(x)^{2} \sigma(x) d x}
$$

and

$$
-\left.p(x) u(x) u^{\prime}(x)\right|_{0} ^{1}=-e^{2} u(1) u^{\prime}(1)+u(0) u^{\prime}(0)=0
$$

since $u^{\prime}(0)=0$ and $u^{\prime}(1)=0$, so the Rayleigh quotient becomes

$$
\lambda=R(u)=\frac{\int_{0}^{1}\left[e^{2 x} u^{\prime}(x)^{2}+e^{2 x} u(x)^{2}\right] d x}{\int_{0}^{1} u(x)^{2}(x+1)^{2} d x} \geqslant 0
$$

and all the eigenvalues of the boundary value problem are nonnegative.
In order to show that $\lambda=0$ is not an eigenvalue, we can see immediately that since u and u^{\prime} are continuous on the interval $[0,1]$, then

$$
\int_{0}^{1}\left[e^{2 x} u^{\prime}(x)^{2}+e^{2 x} u(x)^{2}\right] d x=0
$$

implies that $u(x)=u^{\prime}(x)=0$ for all $0 \leqslant x \leqslant 1$. Hence there is no nontrivial eigenfunction corresponding to $\lambda=0$.

Alternatively, the equation $u^{\prime \prime}+2 u^{\prime}-u=0,0 \leqslant x \leqslant 1$, has general solution

$$
u(x)=A e^{-x} e^{\sqrt{2} x}+B e^{-x} e^{-\sqrt{2} x}
$$

and from the boundary conditions $u^{\prime}(0)=0$ and $u^{\prime}(1)=0$, the solution is $u(x)=0$ for $0 \leqslant x \leqslant 1$.

Therefore the leading eigenvalue $\lambda_{1}>0$.
(e) In order to get an upper bound on λ_{1}, we try a quadratic test function v which satisfies the boundary conditions $v^{\prime}(0)=0$ and $v^{\prime}(1)=0$, say

$$
v(x)=a x^{2}+b x+c \quad \text { with } \quad v^{\prime}(x)=2 a x+b
$$

then the boundary conditions imply that $a=b=0$, so that $v(x)=c$ for $0 \leqslant x \leqslant 1$.
The Rayleigh quotient for this test function is

$$
R(v)=\frac{\int_{0}^{1} c^{2} e^{2 x} d x}{\int_{0}^{1} c^{2}(x+1)^{2} d x}=\frac{3}{14}\left(e^{2}-1\right)
$$

and since λ_{1} is the minimum of $R(u)$ as u runs over all twice continuously differentiable functions that satisfy the boundary conditions, then

$$
0<\lambda_{1} \leqslant \frac{3}{14}\left(e^{2}-1\right)
$$

Exercise 0.3.

Hermite's differential equation reads

$$
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-\infty<x<\infty
$$

(a) Multiply by $e^{-x^{2}}$ and bring the differential equation into Sturm-Liouville form. Decide if the resulting Sturm-Liouville problem is regular or singular.
(b) Show that the Hermite polynomials

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2, \quad H_{3}(x)=8 x^{3}-12 x
$$

are eigenfunctions of the Sturm-Liouville problem and find the corresponding eigenvalues.
(c) Use an appropriate weight function and show that H_{1} and H_{2} are orthogonal on the interval $(-\infty, \infty)$ with respect to this weight function.

Solution to Exercise 0.3:

(a) Multiplying the differential equation by $e^{-x^{2}}$, we have

$$
e^{-x^{2}} y^{\prime \prime}-2 x e^{-x^{2}} y^{\prime}+\lambda e^{-x^{2}} y=0
$$

that is,

$$
\frac{d}{d x}\left(e^{-x^{2}} y^{\prime}\right)+\lambda e^{-x^{2}} y=0
$$

This is the self-adjoint form of Hermite's equation, with $p(x)=r(x)=e^{-x^{2}}$ and $q(x)=0$. Even though p, p^{\prime}, q, and r are all continuous on the interval $(-\infty, \infty)$, this Sturm-Liouville problem is singular since the interval is infinite.
(b) The Hermite polynomial of degree n is denoted by $H_{n}(x)$.

- For $H_{0}(x)=1$ we have

$$
H_{0}^{\prime \prime}-2 x H_{0}^{\prime}+\lambda_{0} H_{0}=0
$$

if and only if $\lambda_{0}=0$, and the eigenvalue corresponding to the eigenfunction $H_{0}(x)$ is $\lambda_{0}=0$.

- For $H_{1}(x)=2 x$ we have

$$
H_{1}^{\prime \prime}-2 x H_{1}^{\prime}+\lambda_{1} H_{1}=0
$$

if and only if $-4 x+2 \lambda_{1} x=0$ for all x, that is, if and only if $\lambda_{1}=2$, and the eigenvalue corresponding to the eigenfunction $H_{1}(x)$ is $\lambda_{1}=2$.

- For $H_{2}(x)=4 x^{2}-2$ we have

$$
\begin{aligned}
H_{2}^{\prime \prime}-2 x H_{2}^{\prime}+\lambda_{2} H_{2} & =8-2 x(8 x)+\lambda_{2}\left(4 x^{2}-2\right) \\
& =-4\left(4 x^{2}-2\right)+\lambda_{2}\left(4 x^{2}-2\right) \\
& =\left(\lambda_{2}-4\right)\left(4 x^{2}-2\right) \\
& =0
\end{aligned}
$$

for all x if and only if $\lambda_{2}=4$, and the eigenvalue corresponding to the eigenfunction $H_{2}(x)$ is $\lambda_{2}=4$.

- For $H_{3}(x)=8 x^{3}-12 x$ we have

$$
\begin{aligned}
H_{3}^{\prime \prime}-2 x H_{3}^{\prime}+\lambda_{3} H_{3} & =48 x-2 x\left(24 x^{2}-12\right)+\lambda_{3}\left(8 x^{3}-12 x\right) \\
& =-48 x^{3}+72 x+\lambda_{3}\left(8 x^{3}-12 x\right) \\
& =\left(\lambda_{3}-6\right)\left(8 x^{3}-12 x\right) \\
& =0
\end{aligned}
$$

for all x if and only if $\lambda_{3}=6$, and the eigenvalue corresponding to the eigenfunction $H_{3}(x)$ is $\lambda_{3}=6$.
(c) There are two methods to answer this question. The more elegant method is as follows. We can show that the Hermite polynomials H_{n}, for $n \geqslant 0$, are orthogonal on the interval $(-\infty, \infty)$ with respect to the weight function $r(x)=e^{-x^{2}}$, by noting that

$$
\begin{aligned}
& e^{-x^{2}} H_{m} H_{n}^{\prime \prime}-2 x e^{-x^{2}} H_{m} H_{n}^{\prime}+\lambda_{n} H_{m} H_{n}=0, \quad \text { and } \\
& e^{-x^{2}} H_{n} H_{m}^{\prime \prime}-2 x e^{-x^{2}} H_{n} H_{m}^{\prime}+\lambda_{m} H_{m} H_{n}=0,
\end{aligned}
$$

and subtracting, we have

$$
\frac{d}{d x}\left[e^{-x^{2}}\left(H_{m} H_{n}^{\prime}-H_{n} H_{m}^{\prime}\right)\right]+\left(\lambda_{n}-\lambda_{m}\right) e^{-x^{2}} H_{m} H_{n}=0
$$

integrating over the real line, we have

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=\left.\lim _{M \rightarrow \infty} e^{-x^{2}}\left[H_{n}(x) H_{m}^{\prime}(x)-H_{m}(x) H_{n}^{\prime}(x)\right]\right|_{-M} ^{M}=0
$$

since the exponential kills off any polynomial as $|x| \rightarrow \infty$. Therefore, if $m \neq n$, then

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=0
$$

A more straightforward method is by integrating directly, we note immediately that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{1}(x) H_{2}(x) d x=0
$$

since the integrand is an odd function of x and we are integrating between symmetric limits.

Exercise 0.4.

Consider torsional oscillations of a homogeneous cylindrical shaft. If $\omega(x, t)$ is the angular displacement at time t of the cross section at x, then

$$
\frac{\partial^{2} \omega}{\partial t^{2}}=a^{2} \frac{\partial^{2} \omega}{\partial x^{2}}, \quad 0 \leqslant x \leqslant L, \quad t>0
$$

where the initial conditions are

$$
\omega(x, 0)=f(x), \quad \text { and } \quad \frac{\partial \omega}{\partial t}(x, 0)=0, \quad 0 \leqslant x \leqslant L
$$

and the ends of the shaft are fixed elastically:

$$
\frac{\partial \omega}{\partial x}(0, t)-\alpha \omega(0, t)=0, \quad \text { and } \quad \frac{\partial \omega}{\partial x}(L, t)+\alpha \omega(L, t)=0, \quad t>0
$$

with α a positive constant.
(a) Why is it possible to use separation of variables to solve this problem?
(b) Use separation of variables and show that one of the resulting problems is a regular Sturm-Liouville problem.
(c) Show that all of the eigenvalues of this regular Sturm-Liouville problem are positive.

Note: You do not need to solve the initial value problem, just answer the questions (a), (b), and (c).

Solution of Exercise 0.4:

(a) Since the partial differential equation is linear and homogeneous and the boundary conditions are linear and homogeneous, we can use separation of variables.
(b) Assuming a solution of the form

$$
\omega(x, t)=\phi(x) \cdot G(t), \quad 0 \leqslant x \leqslant L, \quad t \geqslant 0
$$

and separating variables, we have two ordinary differential equations:

$$
\begin{aligned}
\phi^{\prime \prime}(x)+\lambda \phi(x) & =0, \quad 0 \leqslant x \leqslant L, \quad G^{\prime \prime}(t)+\lambda a^{2} G(t)=0, \quad t>0, \\
\phi^{\prime}(0)-\alpha \phi(0) & =0 \\
\phi^{\prime}(L)+\alpha \phi(L) & =0
\end{aligned}
$$

where the ϕ-problem is a regular Sturm-Liouville problem with

$$
p(x)=1, \quad q(x)=0, \quad r(x)=1
$$

and

$$
\beta_{1}=1, \quad \beta_{2}=-\alpha, \quad \beta_{3}=1, \quad \beta_{4}=\alpha
$$

(c) We use the Rayleigh quotient to show that $\lambda>0$ for all eigenvalues λ.

Let λ be an eigenvalue of the Sturm-Liouville problem, and let $\phi(x)$ be the corresponding eigenfunction, then

$$
-\left.p(x) \phi(x) \phi^{\prime}(x)\right|_{0} ^{L}=-\phi(L) \phi^{\prime}(L)+\phi(0) \phi^{\prime}(0)=\alpha\left(\phi(0)^{2}+\phi(L)^{2}\right)>0
$$

and since $q(x)=0$ for all $0 \leqslant x \leqslant L$, then

$$
\lambda=\frac{\alpha\left(\phi(0)^{2}+\phi(L)^{2}\right)+\int_{0}^{L} \phi^{\prime}(x)^{2} d x}{\int_{0}^{L} \phi(x)^{2} d x} \geqslant 0
$$

since $p(x)=\sigma(x)=1$ for $0 \leqslant x \leqslant L$.
Note that if $\lambda=0$, then

$$
\alpha\left(\phi(0)^{2}+\phi(L)^{2}\right)+\int_{0}^{L} \phi^{\prime}(x)^{2} d x=0
$$

implies that

$$
\alpha\left(\phi(0)^{2}+\phi(L)^{2}\right)=0 \quad \text { and } \quad \int_{0}^{L} \phi^{\prime}(x)^{2} d x=0
$$

Since $\alpha>0$, this implies that $\phi(0)=0$ and $\phi(L)=0$; and since ϕ^{\prime} is continuous on $[0, L]$, that $\phi^{\prime}(x)=0$ for $0 \leqslant x \leqslant L$. Therefore $\phi(x)$ is constant on $[0, L]$, so that $\phi(x)=\phi(0)=0$ for $0 \leqslant x \leqslant L$, and $\lambda=0$ is not an eigenvalue. Thus, all of the eigenvalues λ of this Sturm-Liouville problem satisfy $\lambda>0$.

Exercise 0.5.
Solve the following initial value problem for the damped wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}+u & =\frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0) & =\frac{1}{1+x^{2}}, \quad-\infty<x<\infty \\
\frac{\partial u}{\partial t}(x, 0) & =1, \quad-\infty<x<\infty
\end{aligned}
$$

Hint: Do not use separation of variables, instead solve the initial value boundary value problem satisfied by $w(x, t)=e^{t} \cdot u(x, t)$.

Solution to Exercise 0.5: Note that $u(x, t)=e^{-t} \cdot w(x, t)$, so that

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{-t} \frac{\partial^{2} w}{\partial x^{2}}
$$

and

$$
\frac{\partial u}{\partial t}=-e^{-t} w+e^{-t} \frac{\partial w}{\partial t}
$$

and

$$
\frac{\partial^{2} u}{\partial t^{2}}=e^{-t} w-2 e^{-t} \frac{\partial w}{\partial t}+e^{-t} \frac{\partial^{2} w}{\partial t^{2}} .
$$

Therefore,

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}+u=e^{-t} \frac{\partial^{2} w}{\partial t^{2}}
$$

while

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{-t} \frac{\partial^{2} w}{\partial x^{2}}
$$

and if u is a solution to the original partial differential equation, then w is a solution to the equation

$$
e^{-t}\left[\frac{\partial^{2} w}{\partial t^{2}}-\frac{\partial^{2} w}{\partial x^{2}}\right]=0
$$

and since $e^{-t} \neq 0$, then w satisfies the initial value problem

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}} & =\frac{\partial^{2} w}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0 \\
w(x, 0) & =\frac{1}{1+x^{2}}, \\
\frac{\partial w}{\partial t}(x, 0) & =1+\frac{1}{1+x^{2}} .
\end{aligned}
$$

From d'Alembert's solution to the wave equation, we have (since $c=1$)

$$
w(x, t)=\frac{1}{2}\left[\frac{1}{1+(x+t)^{2}}+\frac{1}{1+(x-t)^{2}}\right]+\frac{1}{2} \int_{x-t}^{x+t}\left(1+\frac{1}{1+s^{2}}\right) d s
$$

so that

$$
\begin{aligned}
& \qquad u(x, t)=\frac{e^{-t}}{2}\left[\frac{1}{1+(x+t)^{2}}+\frac{1}{1+(x-t)^{2}}\right]+\frac{e^{-t}}{2}\left[2 t+\tan ^{-1}(x+t)-\tan ^{-1}(x-t)\right], \\
& \text { for }-\infty<x<\infty, \quad t \geqslant 0
\end{aligned}
$$

