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Math 337, Summer 2010

Assignment 3

Dr. T Hillen, University of Alberta

Exercise 0.1.

Find the values of λ
2
for which the boundary value problem

d
2
u

dx2
+ λ

2
u = 0, 0 < x <

π

2

u(0) = 0

� π
2

0

u(t) dt = 0

has nontrivial solutions.

Solution to Exercise 0.1: We consider two cases:

case (i): λ = 0

In this case, the general solution to
d
2
u

dx2
= 0 is given by u(x) = Ax+B, and u(0) = 0 implies

that B = 0, so that u(x) = Ax.

The condition

� π
2

0

u(t) dt = 0 implies that

� π
2

0

A t dt = A
t
2

2

����

π
2

0

= A
π
2

8
= 0,

which implies that A = 0, and the boundary value problem has only the trivial solution in

this case.

case (ii): λ �= 0

In this case, the general solution to
d
2
u

dx2
+ λ

2
u = 0 is given by u(x) = A cosλx + B sinλx,

and u(0) = 0 implies that A = 0 so that u(x) = B sinλx.

The condition

� π
2

0

u(t) dt = 0 implies that

� π
2

0

B sinλt dt = −B

λ
cosλt

����

π
2

0

=
B

λ

�
1− cos

λπ

2

�
= 0,

and so either B = 0 or cos
λπ
2 = 1.
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Therefore, a nontrivial solution exists if and only if we have cos
λπ
2 = 1, that is,

λπ
2 = 2πn,

where n �= 0 is an integer. The values of λ
2
for which the boundary value problem has

non-trivial solutions are

λ
2
n = 16n

2
,

for n = 1, 2, 3, . . . .

Exercise 0.2.

Consider the following eigenvalue problem on the interval [ 0, 1 ] :

u
��
(x) + 2u

�
(x)− u(x) + λ (x+ 1)

2
e
−2x

u(x) = 0

u
�
(0) = 0

u
�
(1) = 0

(a) Explain the meaning of eigenvalue problem.

(b) Show that this eigenvalue problem is not of Sturm-Liouville type.

(c) Multiply the above equation by e
2x

to obtain a Sturm-Liouville problem.

Identify p(x), q(x), and σ(x).

(d) Use the Rayleigh quotient to show that the leading eigenvalue is positive,

that is, λ1 > 0.

(e) Find an upper bound for the leading eigenvalue.

Solution to Exercise 0.2:

(a) The eigenvalue problem consists of finding the values of λ (eigenvalues ) for which there

are nontrivial solutions (eigenfunctions ) satisfying both the differential equation and

the boundary conditions.

(b) If the eigenvalue problem

u
��
(x) + 2u

�
(x)− u(x) + λ (x+ 1)

2
e
−2x

u(x) = 0

u
�
(0) = 0

u
�
(1) = 0

were of Sturm-Liouville form, then we would have

u
��
+ 2u

�
= (p u

�
)
�
,

that is, p(x) = 1 and p
�
(x) = 2, which is impossible.
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(c) If we multiply the differential equation by e
2x
, then we have

e
2x
u
��
+ 2e

2x
u
� − e

2x
u+ λ (x+ 1)

2
u = 0, 0 � x � 1,

that is,

(e
2x
u
�
)
� − e

2x
u+ λ(x+ 1)

2
u = 0, 0 � x � 1,

which is of Sturm-Liouville type with p(x) = e
2x
, q(x) = −e

2x
, σ(x) = (x + 1)

2
for

0 � x � 1.

(d) The eigenvalue λ and corresponding eigenfunction u are related by the Rayleigh quo-

tient:

λ = R(u) =

−p(x)u(x)u
�
(x)

����
1

0

+

� 1

0

�
p(x)u

�
(x)

2 − q(x)u(x)
2
�
dx

� 1

0

u(x)
2
σ(x) dx

,

and

−p(x)u(x)u
�
(x)

����
1

0

= −e
2
u(1)u

�
(1) + u(0)u

�
(0) = 0,

since u
�
(0) = 0 and u

�
(1) = 0, so the Rayleigh quotient becomes

λ = R(u) =

� 1

0

�
e
2x
u
�
(x)

2
+ e

2x
u(x)

2
�
dx

� 1

0

u(x)
2
(x+ 1)

2
dx

� 0,

and all the eigenvalues of the boundary value problem are nonnegative.

In order to show that λ = 0 is not an eigenvalue, we can see immediately that since u

and u
�
are continuous on the interval [0, 1], then

� 1

0

�
e
2x
u
�
(x)

2
+ e

2x
u(x)

2
�
dx = 0,

implies that u(x) = u
�
(x) = 0 for all 0 � x � 1. Hence there is no nontrivial eigenfunc-

tion corresponding to λ = 0.

Alternatively, the equation u
��
+ 2u

� − u = 0, 0 � x � 1, has general solution

u(x) = Ae
−x
e

√
2x

+Be
−x
e
−
√
2x
,

and from the boundary conditions u
�
(0) = 0 and u

�
(1) = 0, the solution is u(x) = 0 for

0 � x � 1.

Therefore the leading eigenvalue λ1 > 0.
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(e) In order to get an upper bound on λ1, we try a quadratic test function v which satisfies

the boundary conditions v
�
(0) = 0 and v

�
(1) = 0, say

v(x) = ax
2
+ bx+ c with v

�
(x) = 2ax+ b,

then the boundary conditions imply that a = b = 0, so that v(x) = c for 0 � x � 1.

The Rayleigh quotient for this test function is

R(v) =

� 1

0

c
2
e
2x
dx

� 1

0

c
2
(x+ 1)

2
dx

=
3

14
(e

2 − 1).

and since λ1 is the minimum of R(u) as u runs over all twice continuously differentiable

functions that satisfy the boundary conditions, then

0 < λ1 �
3

14
(e

2 − 1).

Exercise 0.3.

Hermite’s differential equation reads

y
�� − 2xy

�
+ λy = 0, −∞ < x < ∞

(a) Multiply by e
−x2

and bring the differential equation into Sturm-Liouville

form. Decide if the resulting Sturm-Liouville problem is regular or sin-

gular.

(b) Show that the Hermite polynomials

H0(x) = 1, H1(x) = 2x, H2(x) = 4x
2−2, H3(x) = 8x

3−12x

are eigenfunctions of the Sturm-Liouville problem and find the corre-

sponding eigenvalues.

(c) Use an appropriate weight function and show that H1 and H2 are or-

thogonal on the interval (−∞,∞) with respect to this weight function.

Solution to Exercise 0.3:

(a) Multiplying the differential equation by e
−x2

, we have

e
−x2

y
�� − 2xe

−x2
y
�
+ λe

−x2
y = 0,
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that is,

d

dx

�
e
−x2

y
�
�
+ λe

−x2
y = 0.

This is the self-adjoint form of Hermite’s equation, with p(x) = r(x) = e
−x2

and

q(x) = 0. Even though p, p
�
, q, and r are all continuous on the interval (−∞,∞),

this Sturm-Liouville problem is singular since the interval is infinite.

(b) The Hermite polynomial of degree n is denoted by Hn(x).

• For H0(x) = 1 we have

H
��
0 − 2xH

�
0 + λ0H0 = 0

if and only if λ0 = 0, and the eigenvalue corresponding to the eigenfunction H0(x)

is λ0 = 0.

• For H1(x) = 2x we have

H
��
1 − 2xH

�
1 + λ1H1 = 0

if and only if −4x + 2λ1x = 0 for all x, that is, if and only if λ1 = 2, and the

eigenvalue corresponding to the eigenfunction H1(x) is λ1 = 2.

• For H2(x) = 4x
2 − 2 we have

H
��
2 − 2xH

�
2 + λ2H2 = 8− 2x(8x) + λ2(4x

2 − 2)

= −4(4x
2 − 2) + λ2(4x

2 − 2)

= (λ2 − 4)(4x
2 − 2)

= 0

for all x if and only if λ2 = 4, and the eigenvalue corresponding to the eigenfunc-

tion H2(x) is λ2 = 4.

• For H3(x) = 8x
3 − 12x we have

H
��
3 − 2xH

�
3 + λ3H3 = 48x− 2x(24x

2 − 12) + λ3(8x
3 − 12x)

= −48x
3
+ 72x+ λ3(8x

3 − 12x)

= (λ3 − 6)(8x
3 − 12x)

= 0

for all x if and only if λ3 = 6, and the eigenvalue corresponding to the eigenfunc-

tion H3(x) is λ3 = 6.

(c) There are two methods to answer this question. The more elegant method is as follows.

We can show that the Hermite polynomialsHn, for n � 0, are orthogonal on the interval

(−∞,∞) with respect to the weight function r(x) = e
−x2

, by noting that

e
−x2

HmH
��
n − 2xe

−x2
HmH

�
n + λnHmHn = 0, and

e
−x2

HnH
��
m − 2xe

−x2
HnH

�
m + λmHmHn = 0,
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and subtracting, we have

d

dx

�
e
−x2

(HmH
�
n −HnH

�
m)

�
+ (λn − λm)e

−x2
HmHn = 0.

integrating over the real line, we have

(λn − λm)

� ∞

−∞
e
−x2

Hm(x)Hn(x) dx = lim
M→∞

e
−x2

[Hn(x)H
�
m(x)−Hm(x)H

�
n(x)]

����
M

−M

= 0

since the exponential kills off any polynomial as |x| → ∞. Therefore, if m �= n, then
� ∞

−∞
e
−x2

Hm(x)Hn(x) dx = 0.

A more straightforward method is by integrating directly, we note immediately that
� ∞

−∞
e
−x2

H1(x)H2(x) dx = 0,

since the integrand is an odd function of x and we are integrating between symmetric

limits.

Exercise 0.4.

Consider torsional oscillations of a homogeneous cylindrical shaft. If ω(x, t) is

the angular displacement at time t of the cross section at x, then

∂
2
ω

∂t2
= a

2∂
2
ω

∂x2
, 0 � x � L, t > 0.

where the initial conditions are

ω(x, 0) = f(x), and
∂ω

∂t
(x, 0) = 0, 0 � x � L,

and the ends of the shaft are fixed elastically:

∂ω

∂x
(0, t)− αω(0, t) = 0, and

∂ω

∂x
(L, t) + αω(L, t) = 0, t > 0

with α a positive constant.

(a) Why is it possible to use separation of variables to solve this problem ?

(b) Use separation of variables and show that one of the resulting problems

is a regular Sturm-Liouville problem.

(c) Show that all of the eigenvalues of this regular Sturm-Liouville problem

are positive.

Note: You do not need to solve the initial value problem, just answer the

questions (a), (b), and (c).
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Solution of Exercise 0.4:

(a) Since the partial differential equation is linear and homogeneous and the boundary

conditions are linear and homogeneous, we can use separation of variables.

(b) Assuming a solution of the form

ω(x, t) = φ(x) ·G(t), 0 � x � L, t � 0

and separating variables, we have two ordinary differential equations:

φ
��
(x) + λφ(x) = 0, 0 � x � L, G

��
(t) + λa

2
G(t) = 0, t > 0,

φ
�
(0)− αφ(0) = 0

φ
�
(L) + αφ(L) = 0

where the φ-problem is a regular Sturm-Liouville problem with

p(x) = 1, q(x) = 0, r(x) = 1

and

β1 = 1, β2 = −α, β3 = 1, β4 = α.

(c) We use the Rayleigh quotient to show that λ > 0 for all eigenvalues λ.

Let λ be an eigenvalue of the Sturm-Liouville problem, and let φ(x) be the correspond-

ing eigenfunction, then

−p(x)φ(x)φ
�
(x)

����
L

0

= −φ(L)φ
�
(L) + φ(0)φ

�
(0) = α(φ(0)

2
+ φ(L)

2
) > 0,

and since q(x) = 0 for all 0 � x � L, then

λ =

α(φ(0)
2
+ φ(L)

2
) +

� L

0

φ
�
(x)

2
dx

� L

0

φ(x)
2
dx

� 0

since p(x) = σ(x) = 1 for 0 � x � L.

Note that if λ = 0, then

α
�
φ(0)

2
+ φ(L)

2
�
+

� L

0

φ
�
(x)

2
dx = 0

implies that

α
�
φ(0)

2
+ φ(L)

2
�
= 0 and

� L

0

φ
�
(x)

2
dx = 0.
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Since α > 0, this implies that φ(0) = 0 and φ(L) = 0; and since φ
�
is continuous on

[0, L], that φ
�
(x) = 0 for 0 � x � L. Therefore φ(x) is constant on [0, L], so that

φ(x) = φ(0) = 0 for 0 � x � L, and λ = 0 is not an eigenvalue. Thus, all of the

eigenvalues λ of this Sturm-Liouville problem satisfy λ > 0.

Exercise 0.5.

Solve the following initial value problem for the damped wave equation

∂
2
u

∂t2
+ 2

∂u

∂t
+ u =

∂
2
u

∂x2
, −∞ < x < ∞, t > 0

u(x, 0) =
1

1 + x2
, −∞ < x < ∞

∂u

∂t
(x, 0) = 1, −∞ < x < ∞.

Hint: Do not use separation of variables, instead solve the initial value –

boundary value problem satisfied by w(x, t) = e
t · u(x, t).

Solution to Exercise 0.5: Note that u(x, t) = e
−t · w(x, t), so that

∂
2
u

∂x2
= e

−t∂
2
w

∂x2

and

∂u

∂t
= −e

−t
w + e

−t∂w

∂t

and

∂
2
u

∂t2
= e

−t
w − 2e

−t∂w

∂t
+ e

−t∂
2
w

∂t2
.

Therefore,

∂
2
u

∂t2
+ 2

∂u

∂t
+ u = e

−t∂
2
w

∂t2
,

while

∂
2
u

∂x2
= e

−t∂
2
w

∂x2

and if u is a solution to the original partial differential equation, then w is a solution to the

equation

e
−t

�
∂
2
w

∂t2
− ∂

2
w

∂x2

�
= 0,
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and since e
−t �= 0, then w satisfies the initial value problem

∂
2
w

∂t2
=

∂
2
w

∂x2
, −∞ < x < ∞, t > 0,

w(x, 0) =
1

1 + x2
,

∂w

∂t
(x, 0) = 1 +

1

1 + x2
.

From d’Alembert’s solution to the wave equation, we have (since c = 1)

w(x, t) =
1

2

�
1

1 + (x+ t)2
+

1

1 + (x− t)2

�
+

1

2

� x+t

x−t

�
1 +

1

1 + s2

�
ds,

so that

u(x, t) =
e
−t

2

�
1

1 + (x+ t)2
+

1

1 + (x− t)2

�
+

e
−t

2

�
2t+ tan

−1
(x+ t)− tan

−1
(x− t)

�
,

for −∞ < x < ∞, t � 0.


