Math 337, Summer 2010

Assignment 3
Dr. T Hillen, University of Alberta

Exercise 0.1. X
Find the values of A\? for which the boundary value problem
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has nontrivial solutions.

Solution to Exercise 0.1: We consider two cases:
case (i): A =0
2
In this case, the general solution to Y _0is given by u(z) = Az + B, and u(0) = 0 implies

2
that B =0, so that u(z) = Ax.

The condition / ’ u(t) dt = 0 implies that
0
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which implies that A = 0, and the boundary value problem has only the trivial solution in
this case.
case (ii): A #0

d2
In this case, the general solution to —Z + M = 0 is given by u(z) = Acos Az + Bsin Az,

T
and u(0) = 0 implies that A = 0 so that u(z) = Bsin \z.

The condition / i u(t) dt = 0 implies that
0
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and so either B = 0 or cos A—z’r = 1.



Therefore, a nontrivial solution exists if and only if we have cos % = 1, that is, ’\7” = 27n,

where n # 0 is an integer. The values of A\? for which the boundary value problem has
non-trivial solutions are

22 = 16n°,
forn=1,2,3,....

Exercise 0.2. XX
Consider the following eigenvalue problem on the interval [0,1 ] :

u”(z) + 2u' () — u(x) + A (z + 1)2e * u(z) =0
u'(0) =0
W'(1)=0
(a) Explain the meaning of eigenvalue problem.

(b) Show that this eigenvalue problem is not of Sturm-Liouville type.

(c) Multiply the above equation by €2® to obtain a Sturm-Liouville problem.
Identify p(z), ¢(x), and o(z).

(d) Use the Rayleigh quotient to show that the leading eigenvalue is positive,
that is, \; > 0.

(e) Find an upper bound for the leading eigenvalue.

Solution to Exercise 0.2:

(a) The eigenvalue problem consists of finding the values of A (eigenvalues) for which there
are nontrivial solutions (eigenfunctions) satisfying both the differential equation and
the boundary conditions.

(b) If the eigenvalue problem

u(z) + 2u/(x) —u(z) + A (z+ 1)%e > u(z) =0
u'(0) =0
u'(1) =0

were of Sturm-Liouville form, then we would have
u// + 2u/ — (p u/)/7

that is, p(z) = 1 and p/(z) = 2, which is impossible.



(c)

If we multiply the differential equation by €2, then we have
2x I 2x, 1 2x 2, _
e“u" +2eu —eu+ AN (r+1)*u=0, 0<z<1,

that is,
(e*u) —e*u+ ANz +1)*u=0, 0<x<1,

which is of Sturm-Liouville type with p(z) = €**, q(z) = —e**, o(z) = (z + 1)? for
0<z <1

The eigenvalue A and corresponding eigenfunction u are related by the Rayleigh quo-

tient:
1

Sp@pule ()] + [ @) - awu()?] do
A= R(u) = 070 ’

/0 1 w(z)?o(x) dz

and

= —e*u(1)u'(1) + u(0)u'(0) =0,

since u/(0) = 0 and /(1) = 0, so the Rayleigh quotient becomes

/ [/ (z)* + e*u(z)?] do
A= R(u) = 22

/01 u(z)?(x +1)* do

2 0,

and all the eigenvalues of the boundary value problem are nonnegative.

In order to show that A = 0 is not an eigenvalue, we can see immediately that since u
and u' are continuous on the interval [0, 1], then

/o [/ () + e**u(z)?] dx =0,

implies that u(z) = u/(z) = 0 for all 0 < = < 1. Hence there is no nontrivial eigenfunc-
tion corresponding to A = 0.

Alternatively, the equation u” + 2u' —u =0, 0 < z < 1, has general solution
u(z) = Ae *eV?* 4 Be Fe V2,

and from the boundary conditions «'(0) = 0 and «'(1) = 0, the solution is u(z) = 0 for
0<z <1

Therefore the leading eigenvalue A; > 0.



(e) In order to get an upper bound on A;, we try a quadratic test function v which satisfies
the boundary conditions v'(0) = 0 and v'(1) = 0, say

v(r) =ar* +br+c  with  o'(2) = 2az +b,

then the boundary conditions imply that a = b = 0, so that v(z) = c for 0 <z < 1.
The Rayleigh quotient for this test function is

1
/ e dx 3
R(v) = 0 (e? —1).

1
/ Alr+1)%dx
0

and since A; is the minimum of R(u) as u runs over all twice continuously differentiable
functions that satisfy the boundary conditions, then

3
O</\1 < E(GQ—l)

Exercise 0.3. XX
Hermite’s differential equation reads

y" —2zy + My =0, —00 < T < 00

(a) Multiply by e and bring the differential equation into Sturm-Liouville
form. Decide if the resulting Sturm-Liouville problem is regular or sin-
gular.

(b) Show that the Hermite polynomials
Hy(x) =1, H,(z) = 2z, Hy(z) = 42> -2, Hs(z) = 823 — 12z

are eigenfunctions of the Sturm-Liouville problem and find the corre-
sponding eigenvalues.

(c) Use an appropriate weight function and show that H; and H, are or-
thogonal on the interval (—oo, c0) with respect to this weight function.

Solution to Exercise 0.3:

T

(a) Multiplying the differential equation by e~ *. we have

e*"’“gy” — 2xe*x2y’ + )\e*ﬁy =0,



that is,
d 2 2
— (e’m y’) +Xe @y =0.
dx
This is the self-adjoint form of Hermite’s equation, with p(z) = r(z) = e* and
q(z) = 0. Even though p, p/, ¢, and r are all continuous on the interval (—oo, c0),
this Sturm-Liouville problem is singular since the interval is infinite.
(b) The Hermite polynomial of degree n is denoted by H,(x).
e For Hy(z) =1 we have
H(/), - 2$H6 + /\()H() =0
if and only if A\g = 0, and the eigenvalue corresponding to the eigenfunction Hy(x)
is )\0 =0.
e For Hi(x) = 2x we have
H{/ — QIH{ + )\1H1 =0
if and only if —4x + 2 Az = 0 for all x, that is, if and only if A\; = 2, and the
eigenvalue corresponding to the eigenfunction H;(x) is A} = 2.
e For Hy(z) = 42> — 2 we have
HY — 20H) 4+ My Hy = 8 — 22(8x) + Xo(42? — 2)
= —4(42* — 2) + N (42® — 2)
=Ny —4)(42® - 2)
=0
for all x if and only if Ay = 4, and the eigenvalue corresponding to the eigenfunc-
tion Hg(x) is )\2 =4,
e For Hj(z) = 8z — 122 we have
HY — 20 Hj + \3H3 = 487z — 2x(242° — 12) + A3(82° — 122)
= —482° 4 T2x + \3(82° — 127)
= (A3 — 6)(82° — 122)
=0
for all z if and only if A3 = 6, and the eigenvalue corresponding to the eigenfunc-

tion Hg(l’) is )\3 = 6.

(c¢) There are two methods to answer this question. The more elegant method is as follows.
We can show that the Hermite polynomials H,,, for n > 0, are orthogonal on the interval
(=00, 00) with respect to the weight function r(z) = e~**, by noting that

e HynH" — 2ze™ HyH! + M\HyH, =0, and
e H,H" — 2ze™" H,H' + A\ H, H, =0,



and subtracting, we have
d
- [e—xz (HopH — HyH)| + (A — A)e™* Hy H, = 0.
x

integrating over the real line, we have
e’} M
(An = Am) / e " Hp(z)Hy(z)do = lim e [H,(2)H' () — Hp(z)H' (z)] =0

oo M—oo M

since the exponential kills off any polynomial as |z| — oo. Therefore, if m # n, then

/ h e Hyp(z)Hy(z) dz = 0.

o0

A more straightforward method is by integrating directly, we note immediately that
/ ¢~ Hy(z)Hy(x) dz = 0,

since the integrand is an odd function of x and we are integrating between symmetric
limits.

Exercise 0.4. X
Consider torsional oscillations of a homogeneous cylindrical shaft. If w(z,t) is
the angular displacement at time ¢ of the cross section at x, then

Pw 0w
ﬁ:&@, 0<x<L, t>0.
where the initial conditions are
ow
w(z,0) = f(z), and E(ZE’O) =0, 0<z<L,
and the ends of the shaft are fixed elastically:
0 0
a—z(o,t)—aw(o,t)zo, and a—c;(L,t)—l—aw(L,t):O, t>0

with « a positive constant.
(a) Why is it possible to use separation of variables to solve this problem ?

(b) Use separation of variables and show that one of the resulting problems
is a regular Sturm-Liouville problem.

(c) Show that all of the eigenvalues of this regular Sturm-Liouville problem
are positive.

Note: You do not need to solve the initial value problem, just answer the
questions (a), (b), and (c).




Solution of Exercise 0.4:

(a)

(b)

Since the partial differential equation is linear and homogeneous and the boundary
conditions are linear and homogeneous, we can use separation of variables.

Assuming a solution of the form
w(z,t)=¢(x)-Gt), 0<x<L, t=0
and separating variables, we have two ordinary differential equations:

¢"(x) + Ap(x)
¢'(0) — ag(0)
¢'(L) + ag(L)

where the ¢-problem is a regular Sturm-Liouville problem with

p(r) =1, q(x) =0, r(z) =1

0<z<L, G't)+I’G(1t)=0, t>0,

0,
0
0

and
ﬂl = 1, 62 = —Q, ﬂg = 1, 64 = Q.
We use the Rayleigh quotient to show that A > 0 for all eigenvalues A.

Let A be an eigenvalue of the Sturm-Liouville problem, and let ¢(x) be the correspond-
ing eigenfunction, then

= —0(L)¢(L) + 6(0)¢(0) = a(6(0)* + &(L)*) > 0,

0

—p(x)¢(x)¢' ()

and since ¢(x) =0 for all 0 < = < L, then

L

(902 +d(L)?) + | ¢(2)*dx

A= . 0
/ o(z)? dw
0
L

=0

since p(z) = o(z) =1for 0 <z <
Note that if A = 0, then

a(¢(0)* + ¢(L)%) + /0 ¢ (z)*dr =0
implies that .
a(p(0)> +¢(L)*) =0  and /O ¢'(x)? dz = 0.



Since o > 0, this implies that ¢(0) = 0 and ¢(L) = 0; and since ¢’ is continuous on
0, L], that ¢/(z) = 0 for 0 < x < L. Therefore ¢(z) is constant on [0, L], so that
o(x) = ¢(0) =0 for 0 < = < L, and A = 0 is not an eigenvalue. Thus, all of the
eigenvalues A of this Sturm-Liouville problem satisfy A > 0.

Exercise 0.5. X
Solve the following initial value problem for the damped wave equation
@+2@+u=@ —oco<xr<oo, t>0
ot? ot Ox?’ ’
1
u(z,0) = T o <x <00
ou
a(x,O) =1, —-oco<z<o0.

Hint: Do not use separation of variables, instead solve the initial value —
boundary value problem satisfied by w(x,t) = e’ - u(x,t).

Solution to Exercise 0.5: Note that u(z,t) = e - w(x,t), so that

Pu L 0*w
=e
ox? 0x?
and
Ou _ et 4 et
ot ot
and
Pu - dw N L 0*w
N T2
Therefore,
P*u N 28u N _,0*w
—+2—+u=e
ot? ot ot2’
while
Pu L 0%w
=e
0x? 0x?

and if u is a solution to the original partial differential equation, then w is a solution to the
equation
—t 82_11) — 82_11) =0
otz Ox? ’



and since e~* # 0, then w satisfies the initial value problem

Pw  *w
—oco<xr<oo, t>0,

G
1
w(z,0) = T2
ow
o =1 .
ot (z,0) + 1+ 22

From d’Alembert’s solution to the wave equation, we have (since ¢ = 1)

(2.1) = & L ! +1/Wt 1+ )
w\r = — — S
’ 21+ (@+8)? 1+@-t)?] 2/, 1+ 2 ’

so that

et 1 1 et
t) = — — [2t + tan™! t) — tan Mz — ¢
uzt) == {1+(x+t)2+1+(x—t)2}+ p [2t+tan™i @ + ) — tan ™ ()]

for —co < x < o0, t=0.



