Math 337, Summer 2010

Assignment 2
Dr. T Hillen, University of Alberta

Exercise 0.1. X
Let f(z) =cos?z, 0<x <, and f(z +27) = f(z) otherwise.

(a) Find the Fourier sine series for f on the interval [0, 7].

Hint: Forn > 1

1 1
/(3082 xsinnz dr = —5,, cosnT + 1 / [sin(n + 2)z + sin(n — 2)z] dx.
n

(b) Find the Fourier cosine series for f on the interval [0, 7].

(c¢) For which values of = in [0, 7] do the series in (a) and (b) converge to

f(z)?

Solution to Exercise 0.1:

[e.9]
(a) Writing f(z) = cos®*z ~ Y. b, sinnz, the coefficients b, in the Fourier sine series are
n=1

computed as follows:

2 [7 2 (/1 1
b, = —/ cos? rsinnzx dx = —/ (— + = cos 2:10) sinnx dx
T Jo T™Jo \2 2

1 1 " I .
= - —Zcosnzx + = cos 2z sin nx dx
T n 0 T Jo

= % (I—(—-1)™") + % /07r [sin(n — 2)z + sin(n + 2)z] dx

BRI C I

2T n n—2 n+2

if n # 2 is even, while if n = 2, since sin 2x = 2sin x cos z, we have

2 [T 4 [T
by = —/ cos® x sin 2z dr = —/ sin z cos® & dx
0 0

s ™




Therefore, b, = 0 for all even n > 2.

If n is odd,
_ 2 1 1 1
" nr wln—2 n+2
2 1 2n
T own2—4

The Fourier sine series for f is therefore

2 — 1 2k — 1
2,02 in(2k — 1
oS w;{2k—1+(2k—1)2—4}8m< )z

for 0 < x < .

(b) Using the double angle formula, we have

cosx = 1 + 10082x
202 ’

2

which is the Fourier cosine series for f. If you integrate cos® x cos nx, you will find

1 1
G =5 =5, and ar =0 for k#0, 2.

(c) From Dirichlet’s theorem, the Fourier sine series in part (a) converges to cos? x for all
x € (0,7) and converges to 0 for x = 0 and = = 7. The Fourier cosine series in part
(b) converges to cos® x for all € [0, 7] since the series is actually finite.



Exercise 0.2. XX
Given the following initial boundary value problem for the heat equation on

[0, 1].
ou 10%u

Y
u(0,t) =0,
u(1,t) =0

u(z,0) = 7sin 3z

(a) If u(x,t) is the solution to the problem above, find an initial boundary
value problem satisfied by

w(z,t) = eu(z,t).

(b) Solve the problem found in part (a) for w(x,t).
(c¢) Find the solution u(z,t) to the original problem.

(d) Find the time 7) such that u(z,t) < 1 for every z € [0,1] and every
t>1T.

Solution to Exercise 0.2:

(a) If u(w,t) is the solution to the heat equation above, and w(x,t) = e*u(x,t), then

ow 9 OU o
= —Z 19
BN e o + 2e”"u

so that

for0<z<1,t>0.



Therefore, w(z,t) = e*u(x,t) satisfies the initial boundary value problem

ow  10%w

ot 90z
w(0,t) =0
w(l,t) =0

w(z,0) = 7sin 3rx

Assuming a solution of the form w(z,t) = X (x)-T(t) and separating variables, we get
two ordinary differential equations

A
X"+ AX =0 and T+§T:Q
where A is the separation constant. We can satisfy the two boundary conditions by

requiring that X (0) = X (1) = 0, so that X satisfies the boundary value problem

X"+ AX =0
X(0)=0
X(1) =0.

The only nontrivial solutions occur when A > 0, say A\ = u?, where u # 0. In this case
the general solution is
X(z) = Acos px + Bsin ux

and from the boundary conditions, X (0) = 0 implies that A = 0, and X (1) = 0 implies
that sinp = 0, so the eigenvalues are p,, = nm, with corresponding eigenfunctions
X,(x) =sinnmz for n > 1.

For n > 1, the corresponding solution to

n’n?

9

T +—T=0

n2n?

is T,,(t) = e~ 9 ' and from the superposition principle, we write

n2n?

o0
w(z,t) = g bpsinnmre 9
n=1

for0<z<1,t>0.

From the initial condition, we have

7sin 3z = w(z,0) = Z b, sinnmx,
n=1



so that b, = 0 for n # 3, while b3 = 7. Therefore,
w(z,t) = Tsin3mze ™!

for0<xz<1,t>0.

The solution to the original problem is

u(z,t) = e *w(z,t) = Tsin 3nz e~ (T2
for0<z<1,t>0.
Since
sin 3wz < |sin 3wz < 1 and e~ (@ADL 0,
for all z € [0,1] and all ¢ > 0, then we can make u(x,t) < 1 by requiring that
7sin 3rz e (T < 1,

and this will be true if
767(7T2+2)t < 1

?

that is, if
e(7r2+2)t > 77
or equivalently, if
log 7
> =
w2 4 2
so we may take
_ log7
Tz ge
Exercise 0.3. X
Let 0 < a < 7, given the function
1
— if |z|<a
f(a) = 2a
0 if ze€l[-mmn], and |z|>a

find the Fourier series for f and use Dirichlet’s convergence theorem to show

that
. sinna 1
>~ =39

n=1

for0<a<m.




Solution to Exercise 0.3: Since f(z) is an even function of the interval [—m, 7], the Fourier
series of f(x) is given by

f(z) ~ a0+2ancosnx

n=1

1 [7 1 /1 1
aoz—/ flx)de = — —dr = —,
0 T Jo 2a 2m

where

and

2 s
an——/ f(z)cosnz dx
™ Jo
2 (%1
:—/ — cosnhx dx
T Jo 2a
1 a

= — cosnz dx
wa J,

that is,

forn > 1, and
1 1 i sin na cos nx
2T wa n

for —m <z < 7.
Since f(z) is continuous on the interval —a < x < a the Fourier series converges to f(x) for
—a < x < a, that is,

1 1 <X sinna cosnr
fla) =5+ %Z—”

for —a < x < a, in particular, when z = 0, we have

1 1 1 <X sinna
TR D

so that

. sinna _ %(W—a)

n
n=1

for 0 <a<m.



Exercise 0.4. X
Consider the heat equation with a steady source

ou  0%u

— = — + 7sin3z

ot 0x? +

subject to the initial and boundary conditions:
u(0,t) = 0, u(m,t) =0, and u(z,0) = 5sin 3z.

Solve this problem using the method of eigenfunction expansions. Show that
the solution approaches a steady-state solution as t — oo.

Solution to Exercise 0.4: Since the problem already has homogeneous boundary condi-

tions, we consider the corresponding homogeneous problem:

ou  0%*u 0<a< LS 0
., T A 5 IT T, =
ot 0z?’

w(0,) =0, t>0

u(m,t) =0, t>=0.

The eigenvalues and eigenfunctions for this problem are

An =1 and ¢n(x) = sinnx

forn > 1.
We write the solution to the nonhomogeneous problem as an expansion in terms of these

eigenfunctions:
oo

u(z,t) = Z a,(t) sinnz,

n=1
and determine the coefficients a,(¢) which force this to be a solution to the nonhomogeneous
problem.
We will need the eigenfunction expansions for Q(z) = 7sin3z and f(z) = 5sin 3z :

7sin3r = an sin nx, with G =0 for n#3, q3=7

n=1

5sin3x = an sinnzx, with fn=0 for n#3, f3=05.

n=1
Substituting these expansions into the nonhomogeneous equation

ou  0*u ,
5% 0g? + 7sin 3x,



we obtain

d as (t)
dt
and the coefficient az(t) satisfies the initial value problem

sin 3z = —9 as(t) sin 3z + 7sin 3z,

daz(t
-j%l+9%@y:z t>0
(13(0) = 5.

The solution to this initial value problem is
t
az(t) = 5e " + 7/ e~ 9% g,
0

that is,

NeREEN|

Note that lim a3(t) =
t—o0

The solution to the heat equation with a steady source is therefore

7 7
u(z,t) = {5 + (5 — §) e_gt] sin 3z
for0<xz<mandt > 0.

For large value of ¢, this solution approaches r(x) where

7
r(z) = tlgglo u(z,t) = g sin 3z

for 0 < x < 7. where
Differentiating this twice with respect to x, we see that

r"(z) = —Tsin 3z,

and since r(0) = r(m) = 0, then the function r(z) satisfies the boundary value problem

d2
O 7sin3r =0, 0<z<n
dx?

r(0) =0

r(m) =0,

which is exactly the boundary value problem for the steady-state solution, that is, r(x) is
the steady-state or equilibrium solution to the original heat flow problem.



Exercise 0.5. X

(a) Using the method of characteristics, solve

0w, OU_ e <z < t>0
—+c—=e —00 < T < 00
ot oz ’ T
1 2z
w(a:,O)zie , —00 <z < 00.

(b) For which values of ¢ does this initial value problem have a time-
independent solution?

Solution to Exercise 0.5:

(a)

Let d—f = ¢, then along the characteristic curve z(t) = ¢t + a, where a = x(0), the

partial differential equation becomes

dw _ 0w 0wdr _ ) _ etta)
dt ot Oz dt ’

so that ) )
w(a(t),t) = e + K = e + K

1
where K is a constant, and K = w(z(0),0) — 2—6236(0) so that
c

1 T 1 T
W(l’(t),t) = 2_662 ® + w(as(O),O) - 2_662 (0)7

that is,
1 1 1
D) = — 2x(t) = 2(x(t)—ct) Q(x(t)—ct)'
w(z(t),t) 5 + 5¢ 5oC

Given the point (x,t), let = ct+a be the unique characteristic curve passing through
this point, then
w(x t) _ i 62z + 1 eQ(z—ct) . i 62(;B—ct)
’ 2c 2 2c
for —oo < x < ocand t > 0.

Note that if ¢ = 1, then the solution is

1
w(x,t) = §G2I, —00 < T < 00

which is time-independent.



