Math 337, Summer 2010

Assignment 2

Dr. T Hillen, University of Alberta

Exercise 0.1.

Let $f(x)=\cos ^{2} x, \quad 0 \leqslant x \leqslant \pi$, and $f(x+2 \pi)=f(x)$ otherwise.
(a) Find the Fourier sine series for f on the interval $[0, \pi]$.

Hint: For $n \geqslant 1$

$$
\int \cos ^{2} x \sin n x d x=-\frac{1}{2 n} \cos n x+\frac{1}{4} \int[\sin (n+2) x+\sin (n-2) x] d x
$$

(b) Find the Fourier cosine series for f on the interval $[0, \pi]$.
(c) For which values of x in $[0, \pi]$ do the series in (a) and (b) converge to $f(x)$?

Solution to Exercise 0.1:

(a) Writing $f(x)=\cos ^{2} x \sim \sum_{n=1}^{\infty} b_{n} \sin n x$, the coefficients b_{n} in the Fourier sine series are computed as follows:

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ^{2} x \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) \sin n x d x \\
& =\frac{1}{\pi}\left(-\left.\frac{1}{n} \cos n x\right|_{0} ^{\pi}\right)+\frac{1}{\pi} \int_{0}^{\pi} \cos 2 x \sin n x d x \\
& =\frac{1}{n \pi}\left(1-(-1)^{n}\right)+\frac{1}{2 \pi} \int_{0}^{\pi}[\sin (n-2) x+\sin (n+2) x] d x \\
& =\frac{1-(-1)^{n}}{2 \pi}\left(\frac{2}{n}+\frac{1}{n-2}+\frac{1}{n+2}\right)=0
\end{aligned}
$$

if $n \neq 2$ is even, while if $n=2$, since $\sin 2 x=2 \sin x \cos x$, we have

$$
\begin{aligned}
b_{2} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ^{2} x \sin 2 x d x=\frac{4}{\pi} \int_{0}^{\pi} \sin x \cos ^{3} x d x \\
& =-\left.\frac{4}{\pi} \cos ^{4} x\right|_{0} ^{\pi}=0
\end{aligned}
$$

Therefore, $b_{n}=0$ for all even $n \geqslant 2$.

If n is odd,

$$
\begin{aligned}
b_{n} & =\frac{2}{n \pi}+\frac{1}{\pi}\left[\frac{1}{n-2}+\frac{1}{n+2}\right] \\
& =\frac{2}{n \pi}+\frac{1}{\pi} \frac{2 n}{n^{2}-4} .
\end{aligned}
$$

The Fourier sine series for f is therefore

$$
\cos ^{2} x \sim \frac{2}{\pi} \sum_{k=1}^{\infty}\left\{\frac{1}{2 k-1}+\frac{2 k-1}{(2 k-1)^{2}-4}\right\} \sin (2 k-1) x
$$

for $0<x<\pi$.
(b) Using the double angle formula, we have

$$
\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x,
$$

which is the Fourier cosine series for f. If you integrate $\cos ^{2} x \cos n x$, you will find

$$
a_{0}=\frac{1}{2}, \quad a_{2}=\frac{1}{2}, \quad \text { and } \quad a_{k}=0 \quad \text { for } \quad k \neq 0,2 .
$$

(c) From Dirichlet's theorem, the Fourier sine series in part (a) converges to $\cos ^{2} x$ for all $x \in(0, \pi)$ and converges to 0 for $x=0$ and $x=\pi$. The Fourier cosine series in part (b) converges to $\cos ^{2} x$ for all $x \in[0, \pi]$ since the series is actually finite.

Exercise 0.2.
$x x$
Given the following initial boundary value problem for the heat equation on $[0,1]$.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{1}{9} \frac{\partial^{2} u}{\partial x^{2}}-2 u \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =7 \sin 3 \pi x
\end{aligned}
$$

(a) If $u(x, t)$ is the solution to the problem above, find an initial boundary value problem satisfied by

$$
w(x, t)=e^{2 t} u(x, t)
$$

(b) Solve the problem found in part (a) for $w(x, t)$.
(c) Find the solution $u(x, t)$ to the original problem.
(d) Find the time T_{1} such that $u(x, t)<1$ for every $x \in[0,1]$ and every $t>T_{1}$.

Solution to Exercise 0.2:

(a) If $u(x, t)$ is the solution to the heat equation above, and $w(x, t)=e^{2 t} u(x, t)$, then

$$
\begin{aligned}
\frac{\partial w}{\partial t} & =e^{2 t} \frac{\partial u}{\partial t}+2 e^{2 t} u \\
& =e^{2 t}\left(\frac{1}{9} \frac{\partial^{2} u}{\partial x^{2}}-2 u\right)+2 e^{2 t} u \\
& =e^{2 t} \frac{1}{9} \frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

so that

$$
\frac{\partial w}{\partial t}=\frac{1}{9} \frac{\partial^{2} w}{\partial x^{2}}
$$

for $0 \leqslant x \leqslant 1, t \geqslant 0$.

Therefore, $w(x, t)=e^{2 t} u(x, t)$ satisfies the initial boundary value problem

$$
\begin{aligned}
\frac{\partial w}{\partial t} & =\frac{1}{9} \frac{\partial^{2} w}{\partial x^{2}} \\
w(0, t) & =0 \\
w(1, t) & =0 \\
w(x, 0) & =7 \sin 3 \pi x
\end{aligned}
$$

(b) Assuming a solution of the form $w(x, t)=X(x) \cdot T(t)$ and separating variables, we get two ordinary differential equations

$$
X^{\prime \prime}+\lambda X=0 \quad \text { and } \quad T^{\prime}+\frac{\lambda}{9} T=0
$$

where λ is the separation constant. We can satisfy the two boundary conditions by requiring that $X(0)=X(1)=0$, so that X satisfies the boundary value problem

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0 \\
X(0) & =0 \\
X(1) & =0 .
\end{aligned}
$$

The only nontrivial solutions occur when $\lambda>0$, say $\lambda=\mu^{2}$, where $\mu \neq 0$. In this case the general solution is

$$
X(x)=A \cos \mu x+B \sin \mu x
$$

and from the boundary conditions, $X(0)=0$ implies that $A=0$, and $X(1)=0$ implies that $\sin \mu=0$, so the eigenvalues are $\mu_{n}=n \pi$, with corresponding eigenfunctions $X_{n}(x)=\sin n \pi x$ for $n \geqslant 1$.
For $n \geqslant 1$, the corresponding solution to

$$
T^{\prime}+\frac{n^{2} \pi^{2}}{9} T=0
$$

is $T_{n}(t)=e^{-\frac{n^{2} \pi^{2}}{9} t}$, and from the superposition principle, we write

$$
w(x, t)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x e^{-\frac{n^{2} \pi^{2}}{9} t}
$$

for $0 \leqslant x \leqslant 1, t \geqslant 0$.
From the initial condition, we have

$$
7 \sin 3 \pi x=w(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x
$$

so that $b_{n}=0$ for $n \neq 3$, while $b_{3}=7$. Therefore,

$$
w(x, t)=7 \sin 3 \pi x e^{-\pi^{2} t}
$$

for $0 \leqslant x \leqslant 1, t \geqslant 0$.
(c) The solution to the original problem is

$$
u(x, t)=e^{-2 t} w(x, t)=7 \sin 3 \pi x e^{-\left(\pi^{2}+2\right) t}
$$

for $0 \leqslant x \leqslant 1, t \geqslant 0$.
(d) Since

$$
\sin 3 \pi x \leqslant|\sin 3 \pi x| \leqslant 1 \quad \text { and } \quad e^{-\left(\pi^{2}+2\right) t}>0
$$

for all $x \in[0,1]$ and all $t \geqslant 0$, then we can make $u(x, t)<1$ by requiring that

$$
\left|7 \sin 3 \pi x e^{-\left(\pi^{2}+2\right) t}\right|<1
$$

and this will be true if

$$
7 e^{-\left(\pi^{2}+2\right) t}<1
$$

that is, if

$$
e^{\left(\pi^{2}+2\right) t}>7
$$

or equivalently, if

$$
t>\frac{\log 7}{\pi^{2}+2}
$$

so we may take

$$
T_{1}=\frac{\log 7}{\pi^{2}+2} .
$$

Exercise 0.3.

Let $0<a<\pi$, given the function

$$
f(x)=\left\{\begin{array}{lll}
\frac{1}{2 a} & \text { if } & |x|<a \\
0 & \text { if } & x \in[-\pi, \pi], \quad \text { and } \quad|x|>a
\end{array}\right.
$$

find the Fourier series for f and use Dirichlet's convergence theorem to show that

$$
\sum_{n=1}^{\infty} \frac{\sin n a}{n}=\frac{1}{2}(\pi-a)
$$

for $0<a<\pi$.

Solution to Exercise 0.3: Since $f(x)$ is an even function of the interval $[-\pi, \pi]$, the Fourier series of $f(x)$ is given by

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{a} \frac{1}{2 a} d x=\frac{1}{2 \pi},
$$

and

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{a} \frac{1}{2 a} \cos n x d x \\
& =\frac{1}{\pi a} \int_{0}^{a} \cos n x d x \\
& =\left.\frac{1}{\pi a} \cdot \frac{1}{n} \sin n x\right|_{0} ^{a} \\
& =\frac{1}{\pi a} \cdot \frac{\sin n a}{n},
\end{aligned}
$$

that is,

$$
a_{n}=\frac{1}{\pi a} \cdot \frac{\sin n a}{n}
$$

for $n \geqslant 1$, and

$$
f(x) \sim \frac{1}{2 \pi}+\frac{1}{\pi a} \sum_{n=1}^{\infty} \frac{\sin n a \cos n x}{n}
$$

for $-\pi<x<\pi$.
Since $f(x)$ is continuous on the interval $-a<x<a$ the Fourier series converges to $f(x)$ for $-a<x<a$, that is,

$$
f(x)=\frac{1}{2 \pi}+\frac{1}{\pi a} \sum_{n=1}^{\infty} \frac{\sin n a \cos n x}{n}
$$

for $-a<x<a$, in particular, when $x=0$, we have

$$
\frac{1}{2 a}=\frac{1}{2 \pi}+\frac{1}{\pi a} \sum_{n=1}^{\infty} \frac{\sin n a}{n}
$$

so that

$$
\sum_{n=1}^{\infty} \frac{\sin n a}{n}=\frac{1}{2}(\pi-a)
$$

for $0<a<\pi$.

Exercise 0.4.
Consider the heat equation with a steady source

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+7 \sin 3 x
$$

subject to the initial and boundary conditions:

$$
u(0, t)=0, \quad u(\pi, t)=0, \quad \text { and } \quad u(x, 0)=5 \sin 3 x
$$

Solve this problem using the method of eigenfunction expansions. Show that the solution approaches a steady-state solution as $t \rightarrow \infty$.

Solution to Exercise 0.4: Since the problem already has homogeneous boundary conditions, we consider the corresponding homogeneous problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leqslant x \leqslant \pi, \quad t \geqslant 0 \\
& u(0, t)=0, \quad t \geqslant 0 \\
& u(\pi, t)=0, \quad t \geqslant 0
\end{aligned}
$$

The eigenvalues and eigenfunctions for this problem are

$$
\lambda_{n}=n^{2} \quad \text { and } \quad \phi_{n}(x)=\sin n x
$$

for $n \geqslant 1$.
We write the solution to the nonhomogeneous problem as an expansion in terms of these eigenfunctions:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \sin n x
$$

and determine the coefficients $a_{n}(t)$ which force this to be a solution to the nonhomogeneous problem.
We will need the eigenfunction expansions for $Q(x)=7 \sin 3 x$ and $f(x)=5 \sin 3 x$:

$$
\begin{aligned}
& 7 \sin 3 x=\sum_{n=1}^{\infty} q_{n} \sin n x, \quad \text { with } \quad q_{n}=0 \quad \text { for } n \neq 3, \quad q_{3}=7 \\
& 5 \sin 3 x=\sum_{n=1}^{\infty} f_{n} \sin n x, \quad \text { with } \quad f_{n}=0 \quad \text { for } n \neq 3, \quad f_{3}=5
\end{aligned}
$$

Substituting these expansions into the nonhomogeneous equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+7 \sin 3 x
$$

we obtain

$$
\frac{d a_{3}(t)}{d t} \sin 3 x=-9 a_{3}(t) \sin 3 x+7 \sin 3 x
$$

and the coefficient $a_{3}(t)$ satisfies the initial value problem

$$
\begin{aligned}
\frac{d a_{3}(t)}{d t}+9 a_{3}(t) & =7, \quad t \geqslant 0 \\
a_{3}(0) & =5
\end{aligned}
$$

The solution to this initial value problem is

$$
a_{3}(t)=5 e^{-9 t}+7 \int_{0}^{t} e^{-9(t-s)} d s
$$

that is,

$$
a_{3}(t)=\frac{7}{9}+\left(5-\frac{7}{9}\right) e^{-9 t}, \quad t \geqslant 0
$$

Note that $\lim _{t \rightarrow \infty} a_{3}(t)=\frac{7}{9}$.
The solution to the heat equation with a steady source is therefore

$$
u(x, t)=\left[\frac{7}{9}+\left(5-\frac{7}{9}\right) e^{-9 t}\right] \sin 3 x
$$

for $0 \leqslant x \leqslant \pi$ and $t \geqslant 0$.
For large value of t, this solution approaches $r(x)$ where

$$
r(x)=\lim _{t \rightarrow \infty} u(x, t)=\frac{7}{9} \sin 3 x
$$

for $0 \leqslant x \leqslant \pi$. where
Differentiating this twice with respect to x, we see that

$$
r^{\prime \prime}(x)=-7 \sin 3 x,
$$

and since $r(0)=r(\pi)=0$, then the function $r(x)$ satisfies the boundary value problem

$$
\begin{aligned}
\frac{d^{2} r}{d x^{2}}+7 \sin 3 x & =0, \quad 0 \leqslant x \leqslant \pi \\
r(0) & =0 \\
r(\pi) & =0
\end{aligned}
$$

which is exactly the boundary value problem for the steady-state solution, that is, $r(x)$ is the steady-state or equilibrium solution to the original heat flow problem.

Exercise 0.5.

(a) Using the method of characteristics, solve

$$
\begin{aligned}
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x} & =e^{2 x}, \quad-\infty<x<\infty, \quad t \geqslant 0 \\
w(x, 0) & =\frac{1}{2} e^{2 x}, \quad-\infty<x<\infty
\end{aligned}
$$

(b) For which values of c does this initial value problem have a timeindependent solution?

Solution to Exercise 0.5:

(a) Let $\frac{d x}{d t}=c$, then along the characteristic curve $x(t)=c t+a$, where $a=x(0)$, the partial differential equation becomes

$$
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t}=e^{2 x(t)}=e^{2(c t+a)}
$$

so that

$$
w(x(t), t)=\frac{1}{2 c} e^{2(c t+a)}+K=\frac{1}{2 c} e^{2 x(t)}+K
$$

where K is a constant, and $K=w(x(0), 0)-\frac{1}{2 c} e^{2 x(0)}$ so that

$$
w(x(t), t)=\frac{1}{2 c} e^{2 x(t)}+w(x(0), 0)-\frac{1}{2 c} e^{2 x(0)}
$$

that is,

$$
w(x(t), t)=\frac{1}{2 c} e^{2 x(t)}+\frac{1}{2} e^{2(x(t)-c t)}-\frac{1}{2 c} e^{2(x(t)-c t)} .
$$

Given the point (x, t), let $x=c t+a$ be the unique characteristic curve passing through this point, then

$$
w(x, t)=\frac{1}{2 c} e^{2 x}+\frac{1}{2} e^{2(x-c t)}-\frac{1}{2 c} e^{2(x-c t)}
$$

for $-\infty<x<\infty$ and $t>0$.
(b) Note that if $c=1$, then the solution is

$$
w(x, t)=\frac{1}{2} e^{2 x}, \quad-\infty<x<\infty
$$

which is time-independent.

