Math 337, Summer 2010 Assignment 1

Dr. T Hillen, University of Alberta

Exercise 0.1. Let v(x) be the steady-state solution to the initial boundary value problem

$$\frac{\partial^2 u}{\partial x^2} + r = \frac{1}{k} \frac{\partial u}{\partial t}, \quad 0 < x < a, \quad t > 0$$
$$u(0,t) = T_0, \quad t > 0$$
$$\frac{\partial u}{\partial r}(a,t) = 0, \quad t > 0$$

where r is a constant. Find and solve the boundary value problem for the steady-state solution v(x).

Solution to Exercise 0.1: The steady-state solution v(x) satisfies the boundary value problem

$$\frac{d^2v}{dx^2} + r = 0, \quad 0 < x < a$$
$$v(0) = T_0$$
$$\frac{dv}{dx}(a) = 0,$$

and the general solution to the differential equation is

$$v(x) = -\frac{1}{2}rx^2 + Ax + B,$$

and

$$\frac{dv}{dx}(x) = -rx + A.$$

Therefore,

$$v(0) = T_0$$
 implies $B = T_0$
 $\frac{dv}{dx}(a) = 0$ implies $-ra + A = 0$,

so that

$$A = ra$$
 and $B = T_0$.

X

The steady-state solution is therefore

$$v(x) = -\frac{1}{2}rx^2 + rax + T_0$$

X

for $0 \leq x \leq a$.

Exercise 0.2.

Solve the normalized wave equation

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 \leqslant x \leqslant \pi, \quad t \ge 0\\ u(0,t) &= 0, \quad u(\pi,t) = 0, \quad t \ge 0\\ u(x,0) &= \sin x, \quad \frac{\partial u}{\partial t}(x,0) = \sin x, \quad 0 \leqslant x \leqslant \pi. \end{aligned}$$

Solution to Exercise 0.2: Since the partial differential equation and the boundary conditions are linear and homogeneous, we can use separation of variables, and assuming a solution of the form $u(x,t) = \phi(x) \cdot G(t)$, we get two ordinary differential equations:

$$\begin{split} \phi'' + \lambda \phi &= 0, \quad 0 \leqslant x \leqslant \pi \qquad G'' + \lambda G = 0, \quad t \geqslant 0 \\ \phi(0) &= 0, \\ \phi(\pi) &= 0, \end{split}$$

where λ is the separation constant.

We solve the spatial problem first since it has a complete set of boundary conditions. These are homogeneous Dirichlet conditions, so the eigenvalues and eigenfunctions are given by

$$\lambda_n = n^2$$
 and $\phi_n(x) = \sin nx$

for $n \ge 1$, and the corresponding solutions to the temporal equation are

$$G_n(t) = a_n \cos nt + b_n \sin nt.$$

Using the superposition principle we write the solution as an "infinite" linear combination of $\{\phi_n \cdot G_n\}_{n \ge 1}$, that is,

$$u(x,t) = \sum_{n=1}^{\infty} \sin nx \left(a_n \cos nt + b_n \sin nt \right),$$

where the constants a_n and b_n are determined from the initial conditions

$$\sin x = u(x,0) = \sum_{n=1}^{\infty} a_n \sin nx$$

and

$$\sin x = \frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} nb_n \sin nx.$$

From the orthogonality of the eigenfunctions, we find

$$a_1 = 1, \quad a_k = 0 \quad \text{for} \quad k \neq 1$$

$$b_1 = 1, \quad b_k = 0 \quad \text{for} \quad k \neq 1$$

and the solution is

 $u(x,t) = \sin x \cos t + \sin x \sin t$

for $0 \leq x \leq \pi$, and $t \geq 0$.

Exercise 0.3. Find all functions ϕ for which $u(x,t) = \phi(x - ct)$ is a solution of the heat equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}, \quad -\infty < x < \infty$ where k and c are constants.

Solution to Exercise 0.3: If ϕ is a twice continuously differentiable function such that $u(x,t) = \phi(x - ct)$ is a solution of the heat equation, then

$$\frac{\partial u}{\partial t} = -c\phi'(x - ct)$$
$$\frac{\partial u}{\partial x} = \phi'(x - ct)$$
$$\frac{\partial^2 u}{\partial x^2} = \phi''(x - ct)$$

and ϕ satisfies the equation

$$\phi''(x - ct) + \frac{c}{k}\phi'(x - ct) = 0,$$

for all $-\infty < x < \infty$ and $t \ge 0$, that is,

$$\phi''(s) + \frac{c}{k}\phi'(s) = 0$$

for all $s \in \mathbb{R}$. Therefore the solution is given by

$$\phi(s) = A + Be^{-\frac{c}{k}s},$$

that is,

$$u(x,t) = A + Be^{-\frac{c}{k}(x-ct)}$$

where A and B are arbitrary constants.

Exercise 0.4.

A fluid occupies the half plane y > 0 and flows past (left to right, approximately) a plate located near the x-axis. If the x and y components of the velocity are $U_0 + u(x, y)$ and v(x, y), respectively where U_0 is the constant free-stream velocity, then under certain assumptions, the equations of motion, continuity, and state can be reduced to

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}, \qquad \left(1 - M^2\right) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \qquad (*)$$

valid for all $-\infty < x < \infty$, $0 < y < \infty$.

Suppose there exists a function ϕ (called the *velocity potential*), such that

$$u = \frac{\partial \phi}{\partial x}$$
 and $v = \frac{\partial \phi}{\partial y}$

- (a) State a condition under which the first equation in (*) above becomes an identity.
- (b) Show that the second equation in (*) above becomes (assuming the freestream Mach number M is a constant) a partial differential equation for ϕ which is elliptic if M < 1 or hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial y \partial x}$$

and

$$\frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial x \partial y},$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in (*) is an identity provided that

$$\frac{\partial^2 \phi}{\partial y \partial x} = \frac{\partial^2 \phi}{\partial x \partial y}$$

for all $-\infty < x < \infty$, $0 < y < \infty$.

Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.

X

(b) Again, assuming the existence of a velocity potential, the second equation in (*) becomes

$$(1 - M^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0,$$

which is elliptic if $1 - M^2 > 0$ and hyperbolic if $1 - M^2 < 0$, that is, elliptic if M < 1 and hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial y \partial x}$$

and

$$\frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial x \partial y},$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in (*) is an identity provided that

$$\frac{\partial^2 \phi}{\partial y \partial x} = \frac{\partial^2 \phi}{\partial x \partial y}$$

for all $-\infty < x < \infty$, $0 < y < \infty$.

Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.

(b) Again, assuming the existence of a velocity potential, the second equation in (*) becomes

$$(1 - M^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0,$$

which is elliptic if $1 - M^2 > 0$ and hyperbolic if $1 - M^2 < 0$, that is, elliptic if M < 1 and hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial y \partial x}$$

and

$$\frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial x \partial y},$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in (*) is an identity provided that

$$\frac{\partial^2 \phi}{\partial y \partial x} = \frac{\partial^2 \phi}{\partial x \partial y}$$

for all $-\infty < x < \infty$, $0 < y < \infty$.

Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.

(b) Again, assuming the existence of a velocity potential, the second equation in (*) becomes

$$(1-M^2)\frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = 0,$$

which is elliptic if $1 - M^2 > 0$ and hyperbolic if $1 - M^2 < 0$, that is, elliptic if M < 1 and hyperbolic if M > 1.