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Math 337, Summer 2010

Assignment 1

Dr. T Hillen, University of Alberta

Exercise 0.1. %

Let v(x) be the steady-state solution to the initial boundary value problem

∂2u

∂x2
+ r =

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, t > 0

∂u

∂x
(a, t) = 0, t > 0

where r is a constant. Find and solve the boundary value problem for the
steady-state solution v(x).

Solution to Exercise 0.1: The steady-state solution v(x) satisfies the boundary value
problem

d2v

dx2
+ r = 0, 0 < x < a

v(0) = T0

dv

dx
(a) = 0,

and the general solution to the differential equation is

v(x) = −1

2
rx2 + Ax+B,

and
dv

dx
(x) = −rx+ A.

Therefore,

v(0) = T0 implies B = T0

dv

dx
(a) = 0 implies − ra+ A = 0,

so that
A = ra and B = T0.
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The steady-state solution is therefore

v(x) = −1

2
rx2 + rax+ T0

for 0 6 x 6 a.

Exercise 0.2. %

Solve the normalized wave equation

∂2u

∂t2
=
∂2u

∂x2
, 0 6 x 6 π, t > 0

u(0, t) = 0, u(π, t) = 0, t > 0

u(x, 0) = sinx,
∂u

∂t
(x, 0) = sin x, 0 6 x 6 π.

Solution to Exercise 0.2: Since the partial differential equation and the boundary con-
ditions are linear and homogeneous, we can use separation of variables, and assuming a
solution of the form u(x, t) = φ(x) ·G(t), we get two ordinary differential equations:

φ′′ + λφ = 0, 0 6 x 6 π G′′ + λG = 0, t > 0

φ(0) = 0,

φ(π) = 0,

where λ is the separation constant.

We solve the spatial problem first since it has a complete set of boundary conditions. These
are homogeneous Dirichlet conditions, so the eigenvalues and eigenfunctions are given by

λn = n2 and φn(x) = sinnx

for n > 1, and the corresponding solutions to the temporal equation are

Gn(t) = an cosnt+ bn sinnt.

Using the superposition principle we write the solution as an “infinite” linear combination
of {φn ·Gn}n>1, that is,

u(x, t) =
∞∑
n=1

sinnx (an cosnt+ bn sinnt) ,

where the constants an and bn are determined from the initial conditions

sinx = u(x, 0) =
∞∑
n=1

an sinnx
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and

sinx =
∂u

∂t
(x, 0) =

∞∑
n=1

nbn sinnx.

From the orthogonality of the eigenfunctions, we find

a1 = 1, ak = 0 for k 6= 1

b1 = 1, bk = 0 for k 6= 1

and the solution is
u(x, t) = sinx cos t+ sinx sin t

for 0 6 x 6 π, and t > 0.

Exercise 0.3. %

Find all functions φ for which u(x, t) = φ(x − ct) is a solution of the heat
equation

∂2u

∂x2
=

1

k

∂u

∂t
, −∞ < x <∞

where k and c are constants.

Solution to Exercise 0.3: If φ is a twice continuously differentiable function such that
u(x, t) = φ(x− ct) is a solution of the heat equation, then

∂u

∂t
= −cφ′(x− ct)

∂u

∂x
= φ′(x− ct)

∂2u

∂x2
= φ′′(x− ct)

and φ satisfies the equation

φ′′(x− ct) +
c

k
φ′(x− ct) = 0,

for all −∞ < x <∞ and t > 0, that is,

φ′′(s) +
c

k
φ′(s) = 0

for all s ∈ R. Therefore the solution is given by

φ(s) = A+Be−
c
k
s,

that is,

u(x, t) = A+Be−
c
k
(x−ct)

where A and B are arbitrary constants.
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Exercise 0.4. %

A fluid occupies the half plane y > 0 and flows past (left to right, approx-
imately) a plate located near the x-axis. If the x and y components of the
velocity are U0 + u(x, y) and v(x, y) , respectively where U0 is the constant
free-stream velocity, then under certain assumptions, the equations of motion,
continuity, and state can be reduced to

∂u

∂y
=
∂v

∂x
,

(
1−M2

) ∂u
∂x

+
∂v

∂y
= 0, (∗)

valid for all −∞ < x <∞, 0 < y <∞.
Suppose there exists a function φ (called the velocity potential ), such that

u =
∂φ

∂x
and v =

∂φ

∂y
.

(a) State a condition under which the first equation in (∗) above becomes
an identity.

(b) Show that the second equation in (∗) above becomes (assuming the free-
stream Mach number M is a constant) a partial differential equation for
φ which is elliptic if M < 1 or hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential φ exists, then

∂u

∂y
=

∂

∂y

(
∂φ

∂x

)
=

∂2φ

∂y∂x

and
∂v

∂x
=

∂

∂x

(
∂φ

∂y

)
=

∂2φ

∂x∂y
,

and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (∗) is an identity provided that

∂2φ

∂y∂x
=

∂2φ

∂x∂y

for all −∞ < x <∞, 0 < y <∞.

Another possible solution then is obtained by assuming that the velocity potential
φ(x, y) is twice continuously differentiable.
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(b) Again, assuming the existence of a velocity potential, the second equation in (∗) be-
comes (

1−M2
) ∂2φ
∂x2

+
∂2φ

∂y2
= 0,

which is elliptic if 1−M2 > 0 and hyperbolic if 1−M2 < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential φ exists, then

∂u

∂y
=

∂

∂y

(
∂φ

∂x

)
=

∂2φ

∂y∂x

and
∂v

∂x
=

∂

∂x

(
∂φ

∂y

)
=

∂2φ

∂x∂y
,

and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (∗) is an identity provided that

∂2φ

∂y∂x
=

∂2φ

∂x∂y

for all −∞ < x <∞, 0 < y <∞.
Another possible solution then is obtained by assuming that the velocity potential
φ(x, y) is twice continuously differentiable.

(b) Again, assuming the existence of a velocity potential, the second equation in (∗) be-
comes (

1−M2
) ∂2φ
∂x2

+
∂2φ

∂y2
= 0,

which is elliptic if 1−M2 > 0 and hyperbolic if 1−M2 < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential φ exists, then

∂u

∂y
=

∂

∂y

(
∂φ

∂x

)
=

∂2φ

∂y∂x

and
∂v

∂x
=

∂

∂x

(
∂φ

∂y

)
=

∂2φ

∂x∂y
,
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and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (∗) is an identity provided that

∂2φ

∂y∂x
=

∂2φ

∂x∂y

for all −∞ < x <∞, 0 < y <∞.
Another possible solution then is obtained by assuming that the velocity potential
φ(x, y) is twice continuously differentiable.

(b) Again, assuming the existence of a velocity potential, the second equation in (∗) be-
comes (

1−M2
) ∂2φ
∂x2

+
∂2φ

∂y2
= 0,

which is elliptic if 1−M2 > 0 and hyperbolic if 1−M2 < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.


