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Exercise 0.1. X
Let v(x) be the steady-state solution to the initial boundary value problem

o + LOu 0<z< t>0

— +r=-—= r<a
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U(O,t) = T(), t>0
0
a—Z(a,t) =0, t>0

where 7 is a constant. Find and solve the boundary value problem for the
steady-state solution v(z).

Solution to Exercise 0.1: The steady-state solution v(z) satisfies the boundary value
problem

d*v
wﬁ‘?“:o, O<z<a
U(O):TO
dv
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and the general solution to the differential equation is

1
v(z) = —=ra* + Az + B,

2
and p
d—;(x) = —rzx+ A.

Therefore,

v(0) =Ty implies B =Ty

d

é(a) =0 impliess —ra+A=0,
so that

A=ra and B ="1T,.



The steady-state solution is therefore

1
v(r) = —=r2® +rax + Ty

2
for 0 <z <a.

Exercise 0.2. X
Solve the normalized wave equation

Pu 0%

W = @, 0 < x < T, t 2 0

u(0,t) =0, wu(mt)=0, t=0

: du :
u(z,0) = sinz, E(x,()) =sinz, 0<z<T.

Solution to Exercise 0.2: Since the partial differential equation and the boundary con-
ditions are linear and homogeneous, we can use separation of variables, and assuming a
solution of the form u(z,t) = ¢(x) - G(t), we get two ordinary differential equations:

PN =0, 0<z<t G +XG=0, t>0
¢(0) =0,
¢(m) =0,

where A is the separation constant.
We solve the spatial problem first since it has a complete set of boundary conditions. These
are homogeneous Dirichlet conditions, so the eigenvalues and eigenfunctions are given by

2 and ¢n(x) = sinnx

A =1
for n > 1, and the corresponding solutions to the temporal equation are
Gn(t) = a, cosnt + b, sinnt.
Using the superposition principle we write the solution as an “infinite” linear combination

of {¢n - Gy }ns1, that is,

u(z,t) = Z sin nx (ay, cos nt + by, sinnt) ,

n=1

where the constants a,, and b,, are determined from the initial conditions

oo
sinx = u(x,0) = E a, sin nx
n=1



and

a oo
sinx = a—?;(x, 0) = ;nbn sinnz.

From the orthogonality of the eigenfunctions, we find

ag =1, a,=0 for k#1

bp=1, by=0 for k#1
and the solution is

u(x,t) =sinxcost + sinxsint

forO0<z <7, and t > 0.

Exercise 0.3. X
Find all functions ¢ for which u(x,t) = ¢(x — ct) is a solution of the heat
equation

Pu  10u

—=-—, —00<z<
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where k and ¢ are constants.

Solution to Exercise 0.3: If ¢ is a twice continuously differentiable function such that
u(z,t) = ¢(x — ct) is a solution of the heat equation, then

ou ,

E = —C¢ (I'—Ct)
9 )

5y = =t
0%*u "

gaz = V=)

and ¢ satisfies the equation
" (v — ct) + %gb'(x —ct) =0,
for all —oo < x < oo and t > 0, that is,
#'(s) + 1) = 0
for all s € R. Therefore the solution is given by
o(s) = A+ Be_%s,

that is,
w(x,t) = A+ Be k™

where A and B are arbitrary constants.



Exercise 0.4. X
A fluid occupies the half plane y > 0 and flows past (left to right, approx-
imately) a plate located near the z-axis. If the x and y components of the
velocity are Uy + u(z,y) and v(x,y) , respectively where Uy is the constant
free-stream velocity, then under certain assumptions, the equations of motion,
continuity, and state can be reduced to

8u_@ (1—M2)

Ju Ov
a_y - ax7 O? (*>

oz oy

valid for all —oco <z < 00, 0 <y < 00.
Suppose there exists a function ¢ (called the velocity potential), such that

8¢ 8¢

e an v By

u

(a) State a condition under which the first equation in (x) above becomes
an identity.

(b) Show that the second equation in () above becomes (assuming the free-
stream Mach number M is a constant) a partial differential equation for
¢ which is elliptic if M < 1 or hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential ¢ exists, then

du 3(@) _ P

a_y - Oy \ Oz Oyox

and

- Ozdy’

v _ 0 (00 _ %
or Oz \ Jy

and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (x) is an identity provided that

¢ ¢

dydxr  0xdy

for all —co <z <00, 0 <y < o0.

Another possible solution then is obtained by assuming that the velocity potential
¢(z,y) is twice continuously differentiable.



(b) Again, assuming the existence of a velocity potential, the second equation in (x) be-
comes 52 52
Po 0o _
ox?  0y?

which is elliptic if 1 — M? > 0 and hyperbolic if 1 — M? < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.

(1- M2 0,

Solution to Exercise 0.4:

(a) If the velocity potential ¢ exists, then

ou_ 0 (06) _ 0%
dy Oy \oz/) Oyox

and
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or  Ox \Ody) 0x0y’
and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (x) is an identity provided that

¢ ¢
dydx  0xdy

for all —oco < <00, 0 <y < o0.

Another possible solution then is obtained by assuming that the velocity potential
¢(z,y) is twice continuously differentiable.

(b) Again, assuming the existence of a velocity potential, the second equation in (*) be-
comes 2o o
1-M*)——~+-——=0
( ) o2 82/2 ’
which is elliptic if 1 — M? > 0 and hyperbolic if 1 — M? < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.

Solution to Exercise 0.4:

(a) If the velocity potential ¢ exists, then

and



and the mixed partial derivatives are equal at all points where they are continuous.
Therefore, the first equation in (x) is an identity provided that

¢ ¢

dydxr  Oxdy

for all —co <z < o0, 0 <y < 0.
Another possible solution then is obtained by assuming that the velocity potential
¢(x,y) is twice continuously differentiable.
Again, assuming the existence of a velocity potential, the second equation in (x) be-
comes

D¢ N D¢ B
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which is elliptic if 1 — M? > 0 and hyperbolic if 1 — M? < 0, that is, elliptic if M < 1
and hyperbolic if M > 1.
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