Math 337, Summer 2010
 Assignment 1

Dr. T Hillen, University of Alberta

Exercise 0.1.

Let $v(x)$ be the steady-state solution to the initial boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+r & =\frac{1}{k} \frac{\partial u}{\partial t}, \quad 0<x<a, \quad t>0 \\
u(0, t) & =T_{0}, \quad t>0 \\
\frac{\partial u}{\partial x}(a, t) & =0, \quad t>0
\end{aligned}
$$

where r is a constant. Find and solve the boundary value problem for the steady-state solution $v(x)$.

Solution to Exercise 0.1: The steady-state solution $v(x)$ satisfies the boundary value problem

$$
\begin{aligned}
\frac{d^{2} v}{d x^{2}}+r & =0, \quad 0<x<a \\
v(0) & =T_{0} \\
\frac{d v}{d x}(a) & =0
\end{aligned}
$$

and the general solution to the differential equation is

$$
v(x)=-\frac{1}{2} r x^{2}+A x+B
$$

and

$$
\frac{d v}{d x}(x)=-r x+A
$$

Therefore,

$$
\begin{array}{lll}
v(0)=T_{0} \quad \text { implies } & B=T_{0} \\
\frac{d v}{d x}(a)=0 \quad \text { implies } \quad-r a+A=0
\end{array}
$$

so that

$$
A=r a \quad \text { and } \quad B=T_{0}
$$

The steady-state solution is therefore

$$
v(x)=-\frac{1}{2} r x^{2}+r a x+T_{0}
$$

for $0 \leqslant x \leqslant a$.
Exercise 0.2.
Solve the normalized wave equation

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leqslant x \leqslant \pi, \quad t \geqslant 0 \\
u(0, t)=0, \quad u(\pi, t)=0, \quad t \geqslant 0 \\
u(x, 0)=\sin x, \quad \frac{\partial u}{\partial t}(x, 0)=\sin x, \quad 0 \leqslant x \leqslant \pi .
\end{gathered}
$$

Solution to Exercise 0.2: Since the partial differential equation and the boundary conditions are linear and homogeneous, we can use separation of variables, and assuming a solution of the form $u(x, t)=\phi(x) \cdot G(t)$, we get two ordinary differential equations:

$$
\begin{aligned}
\phi^{\prime \prime}+\lambda \phi & =0, \quad 0 \leqslant x \leqslant \pi \quad G^{\prime \prime}+\lambda G=0, \quad t \geqslant 0 \\
\phi(0) & =0, \\
\phi(\pi) & =0,
\end{aligned}
$$

where λ is the separation constant.
We solve the spatial problem first since it has a complete set of boundary conditions. These are homogeneous Dirichlet conditions, so the eigenvalues and eigenfunctions are given by

$$
\lambda_{n}=n^{2} \quad \text { and } \quad \phi_{n}(x)=\sin n x
$$

for $n \geqslant 1$, and the corresponding solutions to the temporal equation are

$$
G_{n}(t)=a_{n} \cos n t+b_{n} \sin n t .
$$

Using the superposition principle we write the solution as an "infinite" linear combination of $\left\{\phi_{n} \cdot G_{n}\right\}_{n \geqslant 1}$, that is,

$$
u(x, t)=\sum_{n=1}^{\infty} \sin n x\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

where the constants a_{n} and b_{n} are determined from the initial conditions

$$
\sin x=u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin n x
$$

and

$$
\sin x=\frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} n b_{n} \sin n x .
$$

From the orthogonality of the eigenfunctions, we find

$$
\begin{array}{llll}
a_{1}=1, & a_{k}=0 & \text { for } & k \neq 1 \\
b_{1}=1, & b_{k}=0 & \text { for } & k \neq 1
\end{array}
$$

and the solution is

$$
u(x, t)=\sin x \cos t+\sin x \sin t
$$

for $0 \leqslant x \leqslant \pi$, and $t \geqslant 0$.
Exercise 0.3.
Find all functions ϕ for which $u(x, t)=\phi(x-c t)$ is a solution of the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}, \quad-\infty<x<\infty
$$

where k and c are constants.

Solution to Exercise 0.3: If ϕ is a twice continuously differentiable function such that $u(x, t)=\phi(x-c t)$ is a solution of the heat equation, then

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-c \phi^{\prime}(x-c t) \\
\frac{\partial u}{\partial x} & =\phi^{\prime}(x-c t) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\phi^{\prime \prime}(x-c t)
\end{aligned}
$$

and ϕ satisfies the equation

$$
\phi^{\prime \prime}(x-c t)+\frac{c}{k} \phi^{\prime}(x-c t)=0
$$

for all $-\infty<x<\infty$ and $t \geqslant 0$, that is,

$$
\phi^{\prime \prime}(s)+\frac{c}{k} \phi^{\prime}(s)=0
$$

for all $s \in \mathbb{R}$. Therefore the solution is given by

$$
\phi(s)=A+B e^{-\frac{c}{k} s},
$$

that is,

$$
u(x, t)=A+B e^{-\frac{c}{k}(x-c t)}
$$

where A and B are arbitrary constants.

Exercise 0.4.

A fluid occupies the half plane $y>0$ and flows past (left to right, approximately) a plate located near the x-axis. If the x and y components of the velocity are $U_{0}+u(x, y)$ and $v(x, y)$, respectively where U_{0} is the constant free-stream velocity, then under certain assumptions, the equations of motion, continuity, and state can be reduced to

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}, \quad\left(1-M^{2}\right) \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{*}
\end{equation*}
$$

valid for all $-\infty<x<\infty, 0<y<\infty$.
Suppose there exists a function ϕ (called the velocity potential), such that

$$
u=\frac{\partial \phi}{\partial x} \quad \text { and } \quad v=\frac{\partial \phi}{\partial y} .
$$

(a) State a condition under which the first equation in $(*)$ above becomes an identity.
(b) Show that the second equation in $(*)$ above becomes (assuming the freestream Mach number M is a constant) a partial differential equation for ϕ which is elliptic if $M<1$ or hyperbolic if $M>1$.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right)=\frac{\partial^{2} \phi}{\partial y \partial x}
$$

and

$$
\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right)=\frac{\partial^{2} \phi}{\partial x \partial y}
$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in $(*)$ is an identity provided that

$$
\frac{\partial^{2} \phi}{\partial y \partial x}=\frac{\partial^{2} \phi}{\partial x \partial y}
$$

for all $-\infty<x<\infty, 0<y<\infty$.
Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.
(b) Again, assuming the existence of a velocity potential, the second equation in $(*)$ becomes

$$
\left(1-M^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

which is elliptic if $1-M^{2}>0$ and hyperbolic if $1-M^{2}<0$, that is, elliptic if $M<1$ and hyperbolic if $M>1$.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right)=\frac{\partial^{2} \phi}{\partial y \partial x}
$$

and

$$
\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right)=\frac{\partial^{2} \phi}{\partial x \partial y},
$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in $(*)$ is an identity provided that

$$
\frac{\partial^{2} \phi}{\partial y \partial x}=\frac{\partial^{2} \phi}{\partial x \partial y}
$$

for all $-\infty<x<\infty, 0<y<\infty$.
Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.
(b) Again, assuming the existence of a velocity potential, the second equation in $(*)$ becomes

$$
\left(1-M^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

which is elliptic if $1-M^{2}>0$ and hyperbolic if $1-M^{2}<0$, that is, elliptic if $M<1$ and hyperbolic if $M>1$.

Solution to Exercise 0.4:

(a) If the velocity potential ϕ exists, then

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right)=\frac{\partial^{2} \phi}{\partial y \partial x}
$$

and

$$
\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right)=\frac{\partial^{2} \phi}{\partial x \partial y},
$$

and the mixed partial derivatives are equal at all points where they are continuous. Therefore, the first equation in $(*)$ is an identity provided that

$$
\frac{\partial^{2} \phi}{\partial y \partial x}=\frac{\partial^{2} \phi}{\partial x \partial y}
$$

for all $-\infty<x<\infty, 0<y<\infty$.
Another possible solution then is obtained by assuming that the velocity potential $\phi(x, y)$ is twice continuously differentiable.
(b) Again, assuming the existence of a velocity potential, the second equation in $(*)$ becomes

$$
\left(1-M^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

which is elliptic if $1-M^{2}>0$ and hyperbolic if $1-M^{2}<0$, that is, elliptic if $M<1$ and hyperbolic if $M>1$.

