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Preface

This book is a follow up to the scientific workshop ”Managing Complexity, Re-
ducing Perplexity” which was held in Heidelberg, May 16-20 2011, as part of the
2010-11 Kepler Award for European Young Scientists (KEYS), established by the
European Academy of Sciences (EURASC). The recipients of the award were Mar-
cello Delitala (Italy) for mathematical sciences, Giulia Ajmone Marsan (France)
for social sciences, and Andrea Picco (Germany) for biological sciences. These re-
searchers were chosen from a group of a dozen young European scientists with a
PhD in Mathematics, Biology or Medicine.

”Managing Complexity, Reducing Perplexity” was devoted to an overview of
the status of the art in the study of complex systems, with particular focus on the
analysis of systems pertaining to living matter. Both senior scientists and young
researchers from diverse and prestigious institutions with a deliberately interdisci-
plinary cut were invited, in order to compare approaches and problems from differ-
ent disciplines. A common aim of the talks was that of analyzing the complexity of
living systems by means of new mathematical paradigms that are more adherent to
reality, and which are able to generate both exploratory and predictive models that
are capable of achieving a deeper insight into life science phenomena.

The book collects a selection of scientific contributions from the speakers at the
meeting.

The interest in complex systems has witnessed a remarkable increase in recent
years, due to an increasing awareness that many systems share a common feature,
that is ”complexity”, and that they cannot be successfully modelled by traditional
methods used for inert matter systems. According to an opinion that is widely shared
in the scientific community, a Complex System is any system made up of a large
number of heterogeneous interacting entities, whose interactions lead to the emer-
gence of collective behaviour that is not predictable from the individual dynamics.
Complex systems are often characterized by non-linear structures at different repre-
sentation scales.

When dealing with living systems, it is necessary to face an additional source of
complexity: the interacting entities express an individual strategy that modifies clas-
sical mechanics laws, and, in some cases, generates proliferative and/or destructive

ix
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processes. Moreover, the expression of strategy is heterogeneously distributed over
the system. When dealing with living matter, a seminal paper by H.L. Hartwell and
co-workers should be recalled:
The living matter shows substantial differences with respect to the behaviour of the
inert matter. Although living systems obey the laws of physics and chemistry, the
notion of function or purpose differentiates biology from other natural sciences.
Organisms exist to reproduce, whereas, outside religious beliefs rocks and stars
have no purpose...What really distinguishes biology from physics are survival and
reproduction, and the concomitant notion of function. 3

The interactions between individuals can occur not only through contact, but may
be also distributed in space as well as on networks. Collective emerging behaviour,
determined by the dynamics of interactions, cannot be described only on the basi
of knowledge of the mechanical dynamics of each element, i.e. the dynamics of a
few individuals does not automatically lead to the overall collective dynamics of the
whole system.

Thus, complex systems are intrinsically multiscale, and show emerging phenom-
ena at the macroscopic level that express a self-organizing ability, which is the out-
put of the interactions between entities at the microscopic level. Moreover, the emer-
gence is bottom-up, from lower representation to a higher scale, with a feedback
loop: the emerging patterns may affect and perturb the lower levels (the so-called
”immergence”: a top-down phenomenon).

Due to this self-organizing ability, feedbacks and redundancy, in a fast evolu-
tionary framework, complex systems have in many cases a great capacity to adapt
to changing landscapes, to cope environmental changes and pressures and maintain
their structure and stability against the perturbations that occur at various scales.

An increasing number of applications in technology, economics, and social sci-
ences resemble such systems, given their high number of composing elements and
the non-linear connections among them. ”Complexity” is one of the main features
of a variety of phenomena, from cell biology to fluctuations in economic markets,
from the development of communication networks and the Web to traffic flows in
highways, to the ecosphere evolution against climate changes and other generic en-
vironmental issues.

Many systems of the physical world are made up of several interconnected com-
ponents, which may be represented, and, at times, measured, according to different
scales of observation. Interactions between different parts of the system may show
emerging collective behaviour and structures that require specific interpretations for
each scale of observation, thus highlighting the new features that arise when pass-
ing going from one scale to another. Whether you consider the individual entities
or their subsets, the simultaneously occurring processes at different temporal and
spatial scales characterize the system so that the laws that govern the behaviour
of the ”whole” are qualitatively different from the laws that govern the individual
components.

3 H.L. Hartwell, J.J. Hopfield, S. Leibner, and A.W. Murray, From molecular to modular cell
biology, Nature, 402, c47-c52
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The investigation on complexity has the objective of understanding what its main
properties are. How does the system adapt to evolving conditions? How does it learn
efficiently and how it does optimize its behaviour? Are there common rules that
govern behaviour of complex systems? The development of a science of complexity
cannot be reduced to a single theoretical or technological innovation, but implies a
novel scientific approach.

Thus, ”managing complexity” means identifying the ”complexity” features of
a system, modelling its dynamics, highlighting the possible rise of new structures
and emerging patterns, investigating their resilience against perturbations, searching
for any common features that govern the ways in which this collective behaviour
occurs. A mathematical approach can provide useful suggestions to help understand
the global behaviour of a living system, by capturing its essential features.

Many mathematical models have been proposed to describe various aspects of
complex living systems. There is not a universal tool that is more suitable than
the others: each has its pros and cons, and each aims at highlighting the particular
behaviour of each particular system at a well defined level of representation. A re-
search approach should be designed to select the most significant tool to explain the
collective behaviour, i.e., the tool that contributes the most information for both that
particular scale and for the transition from a representation scale to another one.

The description of complex living systems requires challenging mathematical
structures and original theories, as well as progress in theoretical methods, in nu-
merical algorithms and in developing experimental strategies.

Moreover, it is necessary to bring together different kinds of scientific knowl-
edge and different background to tackle this challenging goal: an interdisciplinary
approach between scientists from different fields is necessary to define a common
protocol that would be able to exchange information, and to design experiments
and indicators which can provide information that would enable the validation, and
therefore the refinement of already proposed models, to develop qualitative anal-
ysis, numerical simulations, and new hypothesis. This is why suitable interactions
between groups of researchers from different areas (mathematics, physics, sociol-
ogy and economics) are necessary to find new paradigms that can be used to model
and investigate a more and more connected, interacting and globalized world.

The above mentioned points were common issues in the workshop and will be the
key points of this book. The focus is on biological systems; the meeting was in fact
devoted to the modelling and simulation in life sciences, focussing on some of the
current topics in biology and medicine and the related mathematical methods: sev-
eral biological systems are characterized by interconnected heterogeneous elements
that, together, exhibit some properties, which are often not obvious at first. These
systems are demanding for interdisciplinary approaches that are able to combine life
sciences and mathematics/physics.

The main topics of the workshop were: complexity in life sciences and in biosys-
tems, regulatory networks, cell motility, multiscale modelling and simulation of can-
cer, morphogenesis and the formation of biological structures, evolution and adap-
tation.
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These topics have been developed by researchers from various disciplines and
different scientific communities (biologists / mathematicians / physicists), who
share a common interest in life sciences, with the aim of achieving deeper insight
into these biological phenomena and, hopefully, a better understanding, simulation
and control of them.

A key issue that emerged during the discussions was the necessity of more and
more direct interaction between Mathematicians/Physicist and Biologists. Indeed,
interdisciplinarity was the leading issue of the workshop; the ability to interpret sci-
entific problems from different points of view is evidently more and more important,
besides the technical knowledge needed to face them.

Apart from the various talks and discussions, some round table were held that led
to some interesting thoughts and discussions.

The first round table was on specific advice from senior scientists to young ones
pertaining to the successful development of scientific research in biomathematics.
The results can be briefly synthesized in some memorable sentences, that emerged
in the discussions:

- Get wet! Mathematicians perform experiments (F. Bussolino, IRCC, Candiolo,
Italy)

- Data Driven Modelling together with Model Driven Experiments (V. Capasso,
University of Milan, Italy)

- Integration. Biologist be your buddy (A. Dell, Imperial College, London)
- Problem Driven (W. Jäger, University of Heidelberg, Germany)
- Stay close to the data (V. Quaranta, Vanderbilt University, USA)
- Scientific honesty ... Do not put all your eggs in one basket (D. Sherrington,

University of Oxford, UK)

The second round table was on which actions are needed by young researchers to
support their career development and the need of education for the next researchers
generation. Here, it was pointed out that more attention should be paid to graduate
education in which the borders of different sectors of sciences are crossed (e.g.
Ph.D. programs combining biomedical skills with maths-physics ones), in order to
establish a ”common protocol” between researchers from different disciplines.

The third round table was on the perspectives of the young scientists, in terms of
career development and the facility of finding suitable positions. Here, the landscape
is heterogeneous, because scientific communities in some countries are still stuck
in rigid and classic disciplinary sectors (as, for instance, in Italy), while in other
countries (e.g. the UK, the USA) things appear to be different. The suggestion was
to try to be truly interdisciplinary, finding stimula and looking for new experiences
”away from home”, if necessary (”Go West, young boy!”).

However, the evident need for a real and continuous interplay between biological
sciences and maths-physics emerged from all discussions.

Another issue that emerged from the discussions was the need of a strong bio-
logical approach to reduce the complexity of the system. It is in fact mandatory to
develop mathematical tools for each scale that retain the key features of the system.
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Deeper considerations on this issue have been developed in the last contribution by
M. Delitala and T. Hillen.

The book presents 12 contributions/research papers dealing with different aspects
of complex biological systems.

The book starts with three contributions that frame the problem of dealing with
complexity in life sciences and the choice of suitable mathematical methods.

The first one is on Physics and Complexity by D. Sherrington. This paper at-
tempts to illustrate how statistical physics has driven the recognition of complex
macroscopic behaviour as a consequence of the combination of competition and in-
homogeneity, and offerred new insights and methodologies of wide application that
can influence many fields of science.

The second contribution, by T. Hillen and M. A. Lewis, on the Mathematical Ecol-
ogy of Cancer, highlights other important aspects of dealing with complex systems:
the trasversality of methods, cross disciplinary and fertilization. Their contribution
focuses on the important connections between ecology and cancer modelling which
bring together mathematical oncology and mathematical ecology to initiate cross
fertilization between these fields.

The contribution by A. Dell and F. Sastre is on glycosylation: a phenomenon
shared by all domains of life. Biological complexity is not linearly related to the
number of genes among species: it is well known that total number of genes in
humans is not very different from organisms such as fruit flies and simple plants.
The Authors point out their attention on a specific phenomenon, the Glycosylation,
that occurs after genes have been translated into proteins, and that results in the
greatest diversity of the products of gene expression.

Focusing in more details on some of the features of complexity, the multiscale
nature of these biological systems has been shown in the following three contribu-
tions on cancer modelling; the onset and evolution of a tumour is a good example
of complex multiscale problem as it is a process that normally spreads over many
years and involves a large variety of phenomena that occur at different biological
scales.

The chapter by P. Macansantos and V. Quaranta on heterogeneity and growth
variability in cell populations focuses on recent advances, both theoretical and ex-
perimental, in quantification and modeling of the clonal variability of proliferation
rates within cell populations, highlighting work carried out in cancer-related sys-
tems.

The contribution by P. Gerlee and S. Nelander is focused on the impact of phe-
notypic switching in a model of glioblastoma invasion. Simulations of the stochastic
model and simulations obtained by deriving a continuum description of the system,
show interesting results on the wave speed of the solutions, and suggest a possi-
ble way of treating glioblastomas by altering the balance between proliferative and
migratory behaviour.

The contribution by D. Trucu and M. A. J. Chaplain on Multiscale Analysis and
Modelling for Cancer Growth and Development, presents a novel framework that
enables a rigorous analysis of processes that occur at three (or more) independent
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scales (e.g. intracellular, cellular, tissue). Then, a new model is proposed that fo-
cuses on the macroscopic dynamics of the distributions of cancer cells and of the
surrounding extracellular matrix and its connection with the microscale dynamics
of the matrix degrading enzymes, produced at individual cancer cell level.

The need for new mathematical frameworks and tools to deal with some features
of the biological phenomena is also evident in the contribution by J. Calvo, J. Soler
and M. Verbeni who propose a non-linear flux-limited model for the transport of
morphogens. They introduce flux-limited diffusion as a new tool to obtain mathe-
matical descriptions of biological systems whose fate is controlled by morphogenic
proteins.

The emergence of collective behaviour from interactions at a lower lever (includ-
ing learning, adaptation and evolutionary dynamics) has been dealt with in detail in
the following two contributions.

The chapter by E. Agliari, A. Barra, S. Franz and T. Pentado-Sabetta proposes
some thoughts on ontogenesis in B-cell immune networks. It focuses on the antigen-
independent maturation of B-cells and, via statistical mechanics tools, studies the
emergence of self/non-self discrimination by mature B lymphocytes and highlights
the role of B-B interactions and the learning process at ontogenesis, that develop a
stable memory in the network.

In the chapter by M. Delitala and T. Lorenzi, on the mathematical modelling of
cancer under target therapeutic actions, the authors focus on emerging behaviour in
cancer dynamics. Due to the interaction between cells and therapeutical agents, it
is shown how competition for resources and therapeutical pressure, can lead to the
selection of fitting phenotypes and evolutionary behaviour, such as drug resistance.

The emergence of patterns and the formation of biological structures is also well
represented in the following three contributions.

The contribution by H. Freistühler, J. Fuhrmann and A. Stevens focuses on trav-
elling waves emerging in a diffusive moving filament system. They have derived a
model that describes populations of right and left moving filaments with intrinsic
velocity, diffusion and mutual alignment. Analytical investigations and numerical
simulations show how interesting patterns are composed of several wave profiles
emerge and the role of different parameters.

The chapter by M. Neuss-Radu on a mathematical model for the migration of
hematopoietic stem cells proposes a model, together with a qualitative and compu-
tational analysis. The results are compared with experimental results, and possible
factors and mechanisms are suggested that can play an important role in emerging
behaviour to obtain a quantitative description.

Finally, the last contribution by Pasquale Palumbo highlights the ... STILL
MISSING THE CONTRIBUTION

In conclusion, this book has the aim on one hand of offering mathematical tools
to deal with the modelling of complex biological systems, and on the other of deal-
ing with a variety of research perspectives. The mathematical methods reported in
this book can in fact be developed to study various problems related to the dynam-
ical behaviour of complex systems in different fields, from biology to other life
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sciences. Therefore, applied mathematicians, physicist and biologist may find inter-
esting hints in this book: to help them in modelling, in developing several analytic
problems, in designing new biological experiment, and in exploring new and some-
times unusual perspectives.

This book has been possible thank to success of the workshop. Thus, we wish to
thank all those who contributed directly or indirectly to the successful organization
of the Workshop: the President of the European Academy of Sciences for the ini-
tiative of the Award, Vincenzo Capasso, and Willi Jäger for his continuous support,
the Direction of BIOMS for the generous financial support, and the local committee
of the University of Heidelberg (Willi Jäger, Maria Neuss-Radu, Anna Marciniak-
Czochra and Ina Scheid) for their essential support together with the local Academy
of Sciences and Humanities who offered this great opportunity to young researchers
and all the speakers and participants. Financial support was also provided by the
FIRB project - RBID08PP3J, coordinated by M. Delitala.

Special thanks is due to Prof. T. Hillen, who, in addition to the presentation and
the continuous contribution to the activities of the meeting, also collaborated with
the considerations that conclude this book.

All information regarding the workshop can be found at the conference web site:
http://www.eurasc.org/kepler2010

Turin, November 2012 Marcello Delitala
Paris, November 2012 Giulia Ajmone Marsan





Physics and Complexity: an Introduction

David Sherrington

Abstract Complex macroscopic behaviour can arise in many-body systems with
only very simple elements as a consequence of the combination of competition and
inhomogeneity. This paper attempts to illustrate how statistical physics has driven
this recognition, has contributed new insights and methodologies of wide applica-
tion influencing many fields of science, and has been stimulated in return.

1 Introduction

Many body systems of even very simple microscopic constituents with very simple
interaction rules can show novel emergence in their macroscopic behaviour. When
the interactions (and any constraints) are also mutually incompatible (frustrated) and
there is macroscopically relevant quenched disorder, then the emergent macroscopic
behaviour can be complex (in ways to be discussed) and not simply anticipatable.
Recent years have seen major advances in understanding such behaviour, in recog-
nizing conceptual ubiquities across many apparently different systems and in forg-
ing, transferring and applying new methodologies. Statistical physics has played a
major part in driving and developing the subject and in providing new methods to
study and quantify it. This paper is intended to provide a brief broadbrush introduc-
tion.

A key part of these developments has been the combination of minimalist
modelling, development of new concepts and techniques, and fruitful transfers of
the knowledge between different systems. Here we shall concentrate on a simple
paradigmic model, demonstrate its ubiquitousness among several often very differ-
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2 David Sherrington

ent systems, problems and contexts, and introduce some of the useful concepts that
have arisen.

2 The Dean’s Problem and Spin Glasses

The genesis for the explosion of interest and activity in complexity within the
physics community was in an attempt to understand a group of magnetic alloys
known as spin glasses1(13). But here we shall start with a problem that requires no
physics to appreciate, the Dean’s problem (2).

A College Dean is faced with the task of distributing N students between two
dormitories as amicably as possible but given that some pairs of students prefer to
be in the same dorm while other pairs want to be separated. If any odd number of
students have an odd number of antagonistic pairwise preferences then their prefer-
ences cannot all be satisfied simultaneously. This is an example of frustration. The
Dean’s Problem can can be modelled as a mathematical optimization problem by
defining a cost function H that is to be minimiized:

H =−∑
(i j)

Ji jσiσ j;σ =±1 (1)

where the i, j label students, σ =±1 indicates dorm A/B and the {Ji j = J ji} denote
the sign and magnitude of the inter-student pair preferences (+ = prefer). We shall
further concentrate on the situation where the {Ji j} are chosen randomly and in-
dependently from a single (intensive) distribution P(J) of zero mean2, the random
Dean’s Problem. The number of combinations of possible choices grows exponen-
tially in N (as 2N). There is also, in general, no local simple local iterative mode
of solution. Hence, in general, when N becomes large the Dean’s problem becomes
very hard, in the language of computer science, NP-complete (3).

In fact, the cost function of the random Dean’s Problem was already introduced
in 1975 as a potentially soluble model for a spin glass; there it is known as the
Sherrington-Kirkpatrick (SK) model (4). In this model H is the Hamiltonian (or
energy function), the i, j label spins, the σ their orientation (up/down) and the {J}
are the exchange interactions between pairs of spins.

In the latter case one was naturally interested in the effects of temperature and
of phase transitions as it is varied. In the standard procedure of Gibbsian statistical
mechanics, in thermal equilibrium the probability of a microstate {σ} is given by

P({σ}) = Z−1 exp[−H{Ji j}({σ})/T ] (2)

where Z is the partition function

1 Spin glasses were originally observed as magnetic alloys with unusual non-periodic spin order-
ing. They were also later recognized as having many other fascinating glassy properties
2 This restriction is not essential but represents the potentially hardest case.



Physics and Complexity: an Introduction 3

Z = ∑
{σ}

exp[−H{Ji j}({σ})/T ]; (3)

the subscript {Ji j} has been added to H to make explicit that it is for the particular
instance of the (random) choice of {Ji j}. Again in the spirit of statistical physics one
may usefully consider typical physical properties over realizations of the quenched
disorder, obtainable by averaging them over those choices 3.

Solving the SK model has been a great challenge and has led to new and subtle
mathematical techniques and theoretical conceptualizations, backed by new com-
puter simulational methodologies and experimentation, the detailed discussion of
which is beyond the scope of this brief report. However a brief sketch will be given
of some of the conceptual deductions.

Let us start pictorially. A cartoon of the situation is that of a hierarchically rugged
landscape to describe the energy/cost as a function of position in the space of micro-
scopic coordinates and such that for any local perturbations of the microscopic state
that allow only downhill moves the system rapidly gets stuck and it is impossible to
iterate to the true minimum or even a state close to it. Adding temperature allows
also uphill moves with a probability related to exp[−δH/T ] where δH is the energy
change. But still for T < Tg the system has this glassy hindrance to equilibration,
a non-ergodicity that shows up, for example, in differences in response functions
measured with different historical protocols.

Theoretical studies of the SK model have given this picture substance, clarifica-
tion and quantification, partly by introduction of new concepts beyond those of con-
ventional statistical physics, especially through the work of Giorgio Parisi (13; 5).

Let us assume that, at any temperature of interest, our system has possibly several
essentially separate macrostates, which we label by indices {S}. A useful measure
of similarity of two microstates S,S′ is given by their ‘overlap’, defined as

qSS′ = N−1 ∑
i
〈σi〉S〈σi〉S′ . (4)

where 〈σi〉S measures the thermal average of σi in macrostate S.
The distribution of overlaps is given by

P{Ji j}(q) = ∑
S,S′

WSW ′
Sδ (q−qSS′), (5)

where WS is the probability of finding the system in macrostate S.
In general, the macrostates can depend on the specific choice of the {Ji j} but

for the SK model the average of P{Ji j}(q) can be calculated, as also other more
complicated distributions of the qSS′ , such as the correlation of pairwise overlap
distributions for 3 macrostates S,S′,S′′.

For a simple (non-complex) system there is only one thermodynamically relevant
macrostate and hence P(q) has a single delta function peak; at q = 0 for a param-

3 This is in contrast with traditional computer science which has been more concerned with worst
instances.
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agnet (in the absence of an external field) and at q = m2 for a ferromagnet, where
m is the magnetization per spin. In contrast, in a complex system P(q) has structure
indicating many relevant macrostates4. This is the case for the SK model beneath
a critical temperature and for sufficient frustration, as measured by the ratio of the
standard deviation of P(J) compared with its mean. Furthemore other measures of
the q-distribution indicate a hierarchical structure, ultrametricity and a phylogenic-
tree structure for relating overlaps of macrostates, chaotic evolution with variations
of global parameters, and also non-self-averaging of appropriate measures.

These observations and others give substance to and quantify the rugged land-
scape picture with macrostate barriers impenetrable on timescales becoming infinite
with N. For finite-ranged spin glasses this picture must be relaxed to have only finite
barriers, but still with a non-trivial phase transition to a glassy state.

The macroscopic dynamics in the spin glass phase also shows novel and inter-
esting glassy behaviour5, never equilibrating and having significant deviations from
the usual fluctuation-dissipation relationship6.

A brief introduction to the methodolgies to arrive at these conclusions is deferred
to a later section.

3 Transfers and Extensions

The knowledge gained from such spin glass studies has been applied to increasing
understanding of several other physically different systems and problems, via math-
ematical and conceptual transfers and extensions. Conversely these other systems
have presented interesting new challenges for statistical physics. In this section we
shall illustrate this briefly via discussion of some of these transfers and stimulating
extensions.

In static/thermodynamic extensions there exist several different analogues of the
quenched and annealed microscopic variables, {J} and {σ} above, and of the inten-
sive controls, such as T . Naturally, in dynamics of systems with quenched disorder
the annealed variables (such as the {σ} above) become dynamical, but also one can
consider cases in which the previously quenched parameters are also dynamical but
with slower fundamental microscopic timescales7.

4 The overline indicates an average over the quenched disorder.
5 There are several possible microscopic dynamics that leads to the same equilibrium/Gibbsian
measure, but all such employing local dynamics lead to glassiness.
6 Instead one finds a modified fluctuation-dissipation relation with the temperature normalized by
the instantaneous auto-correlation.
7 Sometimes one speaks of fast and slow microscopic variables but it should be emphasised that
these refer to the underlying microscopic time-scales. Glassiness leads to much slower macroscopic
timescales.
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3.1 Optimization and satisfiability

Already in section (2), one example of eqn.(1) as an optimization problem was given
(the Dean’s Problem). Another classic hard computer science optimization problem
is that of equipartitioning a random graph so as to minimise the cross-links. In this
case the cost function to minimise can be again be written as in eqn. (1), now with
the {i} labelling vertices of the graph, the {Ji j} equal to 1 on edges/graph-links
between vertices and zero where there is no link between i and j, the {σi =±} indi-
cating whether vertices i are in the first or second partition and with the frustrating
constraint ∑i σi = 0 imposing equipartitioning. Without the global constraint this is
a random ferromagnet, but with it the system is in the same complexity class as a
spin glass.

Another classic hard optimization problem that extends eqn. (1) in an apparently
simple way but in fact leads to new consequence is that of random K-satisfiability
(K-SAT) (10). Here the object is to investigate the simultaneous satisfiability of
many, M, randomly chosen clauses, each made up of K possible microscopic con-
ditions involving a large number, N, of binary variables. Labelling the variables
{σi}= {±1} and writing xi to indicate σi = 1 and xi to indicate σi =−1, a K-clause
has the form

(yi1 or yi2or....yiK ); i = 1, ..M (6)

where the yi j are xi j or xi j . In Random K-Sat the {i j} are chosen randomly fron the
N possibilities and the choice of yi j = xi j or xi j is also random, in both cases then
quenched. In this case one finds, for the thermodynamically relevant typical system,
that there are two transitions as the ratio α = M/N is increased in the limit N → ∞;
for α > αc1 it is not possible to satify all the clauses simultaneously (UNSAT), for
α < αc1 the problem is satisfiable in principle (SAT), but for αc2 < α < αc1 it is very
difficult to satisfy (in the sense that all simple local variational algorithms stick);
this region is known as HARD-SAT. These distinctions are attributable to regions of
fundamentally different fractionation of the space of satisfiability, different levels of
complexity.

3.2 K-spin glass

In fact, again there was a stimulating precursor of this K-SAT discovery in a “what-
if” extension of the SK model (6; 7) in which the 2-spin interactions of eqn. (1) are
replaced by K-spin interactions:

HK =− ∑
(i1,i2...iK)

Ji1,i2...iK σi1σi2 ....σ iK (7)

in which the Ji1,i2...iK are again chosen randomly and independently from an in-
tensive distribution of zero mean. In this case, two different phase transitions are
observed as a function of temperature, a lower thermodynamic transition and a dy-
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namical transition that is at a slightly higher temperature, both to complex spin glass
phases. The thermodynamic transition represents what is achievable in principle in
a situation in which all microstates can be accessed; the dynamical transition repre-
sents the situation where the system gets stuck and cannot explore all the possibili-
ties, analogues of HARDSAT-UNSAT and SAT-HARDSAT.

The K-spin glass is also complex with a non-trivial overlap distribution function
P(q) but now the state first reached as the transitions are crossed has a different
structure from that found for the 2-spin case. Now

P(q) = (1− x)δ (q−qmin)+ xδ (q−qmax); (8)

in contrast with the SK case where there is continuous weight below the maximum
qmax. The two delta functions demonstrate that there is still the complexity of many
equivalent but different macrostates, but now with equal mutual orthogonalities (as
compared with the 2-spin SK case where there is a continuous range of macrostates).
This situation turns out to be quite common in many extensions beyond SK.

3.3 Statics, dynamics and temperature

At this point it is perhaps useful to say a few more words about the differences be-
tween statics/thermodynamics and dynamics in statistical physics, and about types
of micro-dynamics and analogues of temperature.

In a physical system one often wishes to study thermodynamic equilibrium, as-
suming all microstates are attainable if one waits long enough. In optimization prob-
lems one typically has two types of problem; the first determining what is attainable
in principle, the second considering how to attain it. The former is the analogue of
thermodynamic equilibrium, the latter of dynamics.

In a physical system the true microscopic dynamics is given by nature. However,
in optimization studies the investigator has the opportunity to determine the micro-
dynamics through the computer algorithms he or she chooses to employ .

Temperature enters the statistical mechanics of a physical problem in the stan-
dard Boltzmann-Gibbs ensemble fashion, or as a measure of the stochastic noise in
the dynamics. We have already noted that it can also enter an optimization prob-
lem in a very similar fashion if there is inbuilt uncertainty in the quantity to be
optimized. But stochadtic noise can also usefully be introduced into the artificial
computer algorithmic dynamics used to try to find that optimum. This is the basis
of the optimization technique of simulated annealing where noise of variance TA
is deliberately introduced to enable the probabalistic scaling of barriers, and then
gradually reduced to zero (8).
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3.4 Neural networks

The brain is made up of a very large number of neurons, firing at different rates
and extents, interconnected by an even much larger number of synapses, both exci-
tory and inhibitory. In a simple model due to Hopfield (9) one can consider a car-
toon describable again by a control function of the form of eqn. (1). In this model
the neurons {i} are idealised by binary McCullough-Pitts variables {σi =±1}, the
synapses by {Ji j}, positive for excitatory and negative for inhibitory, with stochas-
tic neural microdynamics of effective temperature Tneural emulating the width of the
sigmoidal response of a neuron’s output to the combined input from all its afferent
synapses, weighted by the corresponding activity of the afferent neurons.

The synapses are distributed over both signs, yielding frustration and apparently
random at first sight. However actually they are coded to enable attractor basins
related to memorized patterns of the neural microstates {ξ µ

i }; µ = 1, ...p = αN.
The similarity of a neural micro-state to a pattern µ is given by an overlap

mµ = N−1 ∑
i
〈σi〉Sξ µ

i . (9)

Retrieval of memory µ is the attractor process in which a system started with a small
mµ iterates towards a large value of mµ .

In Hopfield’s original model he took the {Ji j} to be given by the Hebb-inspired
form

Ji j = p−1 ∑
µ

ξ µ
i ξ µ

j (10)

with randomly quenched {ξi} 8. For α less than a Tneural-dependent critical value
αc(Tneural) patterns can be retrieved. Beyond it only quasi-random spin glass min-
ima unrelated to the memorised patterns remain ( and still only for Tneural not too
large). However, other {Ji j} permit a slightly larger capacity (as also can occur for
correlated patterns).

Again the landscape cartoon is illustratively useful. It can be envisaged as one
for H{Ji j} as a function of the neural microstates (of all the neurons), with the dy-
namics one of motion in that landscape, searching for minima using local deviation
attempts. The memory basins are large minima. Clearly one would like to have
many different retrievable memories. Hence frustration is necessary. But equally,
too much frustration would lead to a spin-glass like state with minima unrelated to
learned memories.

This cartoon also leads immediately to the recognition that learning involves
modifying the landscape so as to place the attractor minima around the states to
be retrieved. This extension can be modelled minimally via a system of coupled
dynamics of neurons whose state dynamics is fast (attempting retrieval or general-
ization) and synapses that also vary dynamically but on a much slower timescale
and in response to external perturbations (yielding learning).

8 i.e. uncorrelated patterns
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3.5 Minority game

More examples of many-body systems with complex macrobehaviour are to be
found in social systems, in which the microscopic units are people (or groups of
people or institutions), sometimes co-operating, often competing. Here explicit dis-
cussion will be restricted to one simple model, the Minority Game (11), devised to
emulate some features of a stockmarket. N ‘agents’ play a game in which at each
time-step each agent makes one of two choices with the objective to make the choice
which is in the minority9. They have no direct knowledge of one another but (in the
original version) make their choices based on the commonly-available knowledge
of the historical actual minority choices, using their own individual stategies and
experience to make their own decisions. In the spirit of minimalism we consider
all agents (i) to have the same ‘memories’, of the minority choices for the last m
time-steps, (ii) to each have two strategies given by randomly chosen and quenched
Boolean operators that, acting on the m-string of binary entries representing the mi-
nority choices for the last m steps, output a binary instruction on the choice to make,
(iii) using a personal ‘point-score’ to keep tally of how their strategies would have
performed if used, increasing the score each time they would have chosen the actual
minority, and (iv) using their strategy with the larger point-score. Frustration is rep-
resented in the minority requirement, while quenched disorder arises in the random
choice of individual strategies.

Simulational studies of the ‘volatility’, the standard deviation of the actual minor-
ity choice, shows (i) a deviation from individually random choices, indicating cor-
relation through the common information, (ii) a cusp-minimum at a critical value αc
of the ratio of the information dimension to the number of agents α = D/N = 2m/N,
suggesting a phase transition at αc, (iii) ergodicity for α > αc but non-ergodic de-
pendence on the point-score initialization for α < αc, indicating that the transition
represents the onset of complexity. This is reminiscent of the cusp and the ergodic-
nonergodic transition observed in the susceptibilities of spin glass systems as the
temperature is reduced through the spin glass transition.

Furthermore, this behaviour is essentially unaltered if the ‘true’ history is re-
placed by a fictitious ‘random’ history at each step, with all agents being given the
same false history, indicating that it principally represents a carrier for an effective
interaction between the agents. Indeed, generalising to a D-dimensional random
history information space, considering this as a vector-space and the strategies as
quenched D-vectors of components{Rs,µ

i }; s = 1,2, µ = 1, ..D in that space, and av-
eraging over the stochastically random ‘information’, one is led to an effective con-
trol function analagous to those of eqn. (1) and eqn. (10) with p replaced by α , now
{ξi = (R1

i −R2
i )/2}, an extra multiplicative minus sign on the right hand side of eqn.

(10), and also a random-field term dependent upon the {ξi} and {ωi = (R1
i +R2

i )/2}.

9 The philosophy is that one gets the best price by selling when most want to buy or buying when
most want to sell.
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As noted, there is an ergodic-nonergodic transition at a crtitical α , but now the pic-
ture is one of the {ξi} as repellers rather than the attractors of the Hopfield model10.

The typical behaviour of this system, as for the spin glasses, can be studied us-
ing a dynamical generating functional method (12), averaged over the choice of
quenched strategies, in a manner outlined below. The averaged many-body system
can then be mapped into an effective representative agent ensemble with memory
and coloured noise, with both the noise correlations and the memory kernel deter-
mined self-consistently over the ensemble. Note that this is in contrast to (and cor-
rects) the common assumption of a single deterministic representative agent. The
phase transition from ergodic to non-ergodic is manifest by a singularity in the two-
time point-sign correlation function

C(t, t ′) = N−1 ∑
i

sgn(pi(t)sgn(pi(t′) = 〈sgn(p(t)sgn(p(t′)〉ens (11)

where the first equality refers to the many-body problem and the second its equiva-
lence in the effective agent ensemble.

4 Methodologies

For systems in equilibrium, physical observables are given by lnZ evaluated for
the specific instance of any quenched parameters, or strictly the generalized gen-
erating function lnZ({λ}) where the {λ} are generating fields to be taken to zero
after an appropriate operation (such as ∂/∂λ ) is performed. Hence the average over
quenched disorder is given by lnZ. One would like to perform the average over
quenched disorder explicitly to yield an effective system. However, since Z is a sum
over exponentials of a function of the variables, lnZ is difficult to average directly
so instead one uses the relation

lnZ = Limn→0 n−1(Zn−1) (12)

and interprets the Zn as corresponding to a system whose variables have extra
‘replica’ labels, α = 1, ..n, for which one can then average the partition function,
an easier operation, at the price of needing to take the eventual limit n → 0. The
relevant ‘order parameters’ are then correlations between replicas

qαβ = N−1 ∑
i
〈σα

i σβ
i 〉T (13)

10 One can make the model even more minimal by allowing each agent only one strategy {ξi}
which (s)he either follows if its point-score is positive or acts oppositely to if the point-score is
negative. This removes the random-field term and also the cusp in the tabula rasa volatility, but
retains the ergodic-nonergodic transition(13).
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where 〈..〉T refers to a thermal average in the effective post-averaging system. This
order parameter is non-zero in the presence of frozen order, but more interestingly
(and subtly) also exhibits the further remarkable feature of spontaneous replica sym-
metry breaking, indicating complexity. After further subtleties beyond the scope of
this short introduction, there emerges an order function q(x);x ∈ [0.1] from which
the average overlap function is obtained by

P(q) = dx/dq (14)

For dynamics the analogue of the partition function Z is a generating functional,
which may be written symbolically as

Zdyn =
∫

∏
all variables, all times

δ (microscopic eqns. of motion)exp({λφ}) (15)

where the φ symbolize the microscopic variables and a Jacobian is implicit. Av-
eraging over the quenched disorder now induces interaction between epochs and
integrating out the microscopic variables results in the effective single agent en-
semble formulation, as well as emergent correlation and response functions as the
dynamic order parameter analogues of the static inter-replica overlaps, exhibiting
non-analyticity at a phase transition to non-ergodicity.

5 Conclusion

A brief illustration has been presented of how complex co-operative behaviour arises
in many body systems due to the combination of frustration and disorder in the mi-
croscopics of even very simply formulated problems with very few parameters. Such
systems are not only examples of Anderson’s famous quotation “More is different”
but also demonstrate that frustration and disorder in microscopics can lead to com-
plexity in macroscopics; i.e. many and complexly related differents. Furthermore,
this complexity arises in systems with very simple few-valued microscopic param-
eters; complexity is not the same as complication and does not require it.

There has also been demonstrated valuable transfers between systems that appear
very different at first sight, through the media of mathematical modelling, conceptu-
alization and investigatory methodologies, a situation reminiscent of the successful
use of the Rosetta stone in learning an unknown language script by comparison with
another that carries the same message in a different format.

The perspective taken has been of statistical physics, but it must be emphasised
that the stimulation has been both from and to physics, since many of these com-
plex systems have interesting features in their microscopic underpinning that are
richer than those in the physics of conventional dictionary definition and provide
new challenges to the physicist.

Also of note is how a blue skies attempt to understand some obscure magnetic
alloys through soluble but, for the experimental alloys, unphysical modelling has
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led to an explosion of appreciation of new concepts, understanding and application
of ideas and methologies throughout an extremely wide range of the sciences.
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Mathematical Ecology of Cancer

Thomas Hillen and Mark A. Lewis

“The idea of viewing cancer from an ecological perspec-
tive has many implications, but fundamentally it means
that we cannot just consider cancer as a collection of
mutated cells but as part of a complex balance of many
interacting cellular and microenvironmental elements”.
(quoted from the website of the Anderson Lab, Moffit Cancer Cen-
tre, Tampa Bay, USA.)

Abstract It is an emerging understanding that cancer does not describe one disease,
or one type of aggressive cell, but, rather, a complicated interaction of many ab-
normal features and many different cell types, which is situated in a heterogeneous
habitat of normal tissue. Hence, as proposed by Gatenby, and Merlo et al, cancer
should be seen as an ecosystem; issues such as invasion, competition, predator-prey
interaction, mutation, selection, evolution and extinction play an important role in
determining outcomes. It is not surprising that many methods from mathematical
ecology can be adapted to the modeling of cancer.
This paper is a statement about the important connections between ecology and can-
cer modelling. We present a brief overview about relevant similarities and then focus
on three aspects; treatment and control, mutations and evolution, and invasion and
metastasis. The goal is to spark curiosity and to bring together mathematical oncol-
ogy and mathematical ecology to initiate cross fertilization between these fields. We
believe that, in the long run, ecological methods and models will enable us to move
ahead in the design of treatment to fight this devastating disease.
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1 Introduction

The traditional understanding of cancer is based on the view that, through muta-
tions, a very aggressive cell type is created, which grows unlimitedly, is able to
evade treatment and, at later stages, invades into other parts of the body (metasta-
sis). All cells of the tumor are considered as basically identical clones. In recent
years, however, the picture has changed greatly. It is now well accepted that can-
cer does not describe one type of aggressive cells, or even one disease, but rather a
complicated interaction of many abnormal features (Merlo et al. (46), Hanahan and
Weinberg (23; 24) and Gatenby et al. (19; 18)).

A tumor is a result of accumulation of mutations (sometimes 600-1000 muta-
tions), and the tumor mass consists of a heterogeneous mix of cells of different
phenotypes. It is these accumulation of mutations which make cancer so dangerous.
One mutation might only change a metabolic pathway, but this alone will not suffice
for a malignant tumor. As outlined in (24), a full grown invasive tumor can express
cancer stem cells, which have infinite replicative potential, progenitor cells of dif-
ferent abilities, mesenchymal cells which result from an endothelial-mesenchymal
transition (EMT) and are able to aggressively invade new tissue, recruited endothe-
lial cells, which begin to form a vascular network to supply nutrients, recruited
fibroblasts, which support the physical integrity of the tumor, and immune cells,
which can be both, tumor-antagonizing and tumor-promoting. All of this resides in
a heterogeneous environment of healthy tissue. If such a cancer is challenged by a
specific treatment, then only a specific strain of tumor cells will respond to it, and
the treatment will select for those cell types that are more resistant to treatment.
Hence an immediate consequence of this new understanding is that a single specific
treatment is likely to lead to resistance, since only a sub-population is targeted by
the treatment. To have any hope of treatment success, a combination therapy should
be applied, as is done nowadays in most clinical applications.

Hanahan and Weinberg published a list of six hallmarks of cancer in 2000 (23),
which has been very highly cited. Just recently (24), in March 2011, they revised
their hallmarks and adding two enabling characteristics and two emerging hall-
marks. The ten hallmarks, including those of the ”next generation” are:

1. sustained proliferative signalling;
2. avoidance of growth suppressors;
3. resistance of cell death;
4. replicative immortality;
5. induction of angiogenesis;
6. invasion and metastasis;
7. genome instability and mutation;
8. deregulation of cellular energetics;
9. tumor promoting inflammation;

10. avoidance of immune destruction.
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Hanahan and Weinberg suggest that, to understand tumors, we must look deeper
into the microscale processes governing these traits:

. . . tumors are more than insular masses of proliferating cancer cells. Instead they are com-
plex tissues composed of multiple distinct cell types that participate in heterotypic inter-
actions with one another. . . . tumors can no longer be understood simply by enumerating
the traits of the cancer cells but instead must encompass the contributions of the “tumor
microenvironment” to tumorigenesis. (page 646 of (24))

This is where dynamical mathematical models play a key role. If hypotheses about
the processes at the microscale can be formulated quantitatively, then the dynamics
of these processes can form the inputs to a mathematical model, whose analysis then
makes predictions about emergent outcomes. The mathematical model thus builds
a bridge connecting microscale process dynamics to predicted traits or hallmarks
of cancer tumours. A test of the model, and its underlying hypotheses, comes from
comparing model predictions for the emerging traits or hallmarks for cancer tumors
to actual observations.

2 Connecting ecology to cancer modelling

As described above, the process of connecting microscale dynamics to emergent
traits is a central endeavour of field of mathematical oncology (see, for example,
(1; 30) ). However, a similar rubric has also been developed in another subfield of
mathematical biology, namely mathematical ecology. Here ecological processes on
a small scale are connected to emergent ecosystem properties (42). The structure
of modelling dynamics shares many similarities with the complex interactions be-
tween cell types and the environment found in mathematical oncology, although the
processes act on organismal rather than cellular scales. However, the area of mathe-
matical ecology was developed earlier than mathematical oncology and so, in some
respects, has matured further as a field. The goal of this paper is to draw the connec-
tions between mathematical oncology and ecology at the process level, with a view
to inspire curiosity and identify areas where technology transfer is possible, from
one sub-field to the other.

The ultimate goal of cancer research is to understand and control cancer growth
and to heal the patient. As seen in Hanahan and Weinberg’s classification scheme,
the process of tumor development, growth and spread is very complex. In ad-
dition, inclusion of different treatment modalities, such as surgery, radiation or
chemotherapy, makes the whole issue even more complex. Mathematical modelling
has helped scientists to navigate through the complicated interactions and to identify
basic mechanisms of tumor growth and control. Specifically, models for angiogen-
esis, for anti-angiogenesis, for non-vascular tumor growth and for optimization of
chemotherapy or radiation therapy have been used to improve treatment outcomes.
Furthermore, mathematical models link the genetic make-up of a cancer to the dy-
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namics of cancer in tissue. It is, however, a long way from a mathematical result to
a clinical contribution, and we, as modellers, need to work very hard to convince the
medical sciences about the usefullness of mathematical modelling. The ecological
community has understood the relevance of modelling already.

Understanding the distribution and abundance of organisms over space and time
is the goal of ecology. Mathematical ecology uses quantitative methods to connect
the distribution and abundance of organisms to processes such as behavior, com-
petition, food webs, predation, evolution, genetics and environmental fluctuations.
Over the past decades, the mathematical modelling of ecosystems has produced
some sophisticated theories. For example, there is a vast literature on invasion of
foreign species (28), on persistence or permanence of species under stress (3), on
bio-control (13) and optimal control (41), on genetics, mutations and selection (34),
on competition (60) and predator-prey interactions (27) and many forms of struc-
tured population models (7). Some of these methods have been adapted to the situa-
tion of cancer modelling, and we believe that the research on cancer modelling can
even further benefit from these methods. Specifically, we see close resemblances
between ecology and cancer biology in relation to

(a) Mutations and Selection: Genetic instability allows a tumor to adapt to
a changing environment, to avoid destruction from the immune system and to
evade treatments. In ecology, mutation and selection are the driving principles
behind evolution of ecosystems and species.
(b) Competition: Cancer cells compete with healthy cells for nutrients. In ecol-
ogy, many species compete for resources.
(c) Predator-Prey dynamics: The immune system can be seen as a predator on
the cancer cells. However, the ”predator” is not only killing the cancer cells, but
might as well promote tumor growth (see (24)).
(d) Food Chains: Food chains in ecosystems resemble biochemical pathways
and cell metabolism.
(e) Extinction: While species extinction is to be avoided in many ecological
species, cancer extinction is desired for cancer treatment.
(f) Age Structure: Species proliferation naturally depends on the age of the indi-
viduals. Similarly, cells are constrained by a cell cycle and they need to transfer
through the cell cycle phases (G0,G1,S,G2,M) before mitosis.
(g) Periodic Forcing: Ecosystems underlay day-to-day cycles and seasonal cy-
cles. An important cycle in humans is the circadian rhythm, which has an influ-
ence on all cells of the body.
(h) Cell Movement: Cancer cells move through a complex heterogeneous tissue
network. Similarly animals move through heterogeneous environments. Much
work has been done on both, tracking cells (via tagging and microscopy) and
tracking animals (via radiocollars and measurement through global positions sys-
tems (GPS)).
(i) Invasions: Invasions of metastasis is the last step of tumor progression. It is
usually responsible for the death of the patient. Invasions of foreign species into
native ecosystems is one of the major challenges of modern ecology.
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(j) Fragmentation and patchy spread: Cancer tumours often appear to be frag-
mented or patchy. Similarly, population densities are notoriously patchy. Rea-
sons for such patchy distributions, ranging from nonlinear pattern formation to
stochastic effects, to environmental heterogeneity, can equally well be applied
to cancer tissues or ecological populations. Furthermore, in ecosystems, the spa-
tial organization of species is an important feature, which enables coexistence of
otherwise exclusive species.
(k) Path generation: many animal species lay down a network of paths to pop-
ular foraging locations. Here we see an analogy to vasculature formation during
angiogenesis.
(l) Control: Cancer control through treatment resembles ecological control
mechanisms such as hunting and harvesting. Also biological control, through
parasites, is a possible strategy, which is currently discussed in the context of
cancer (e.g. bacterial cancer therapies (15)).

We summarize the relations between cancer and ecology and the type of modelling
in the following Tables 1. In Figure 1 we attempt a visual representation of the
similarities between these areas.

The resemblance is indeed more than striking, and we can use these relations to
our advantage. We should not be shy, but cross borders to benefit from the insights
of mathematical ecology. In fact, Merlo et al. (46) write in their abstract on page
924:

The tools of evolutionary biology and ecology are providing new insights into neoplastic
progression and the clinical control of cancer

The above list, however, is too wide to be covered in a single short paper. Hence
here we will focus on areas that we believe the connections stand out most clearly:
control, evolutionary theories and cell movement and invasion models.

3 Investigating the connections

Tumor control and treatment

The common therapies against cancer include surgical removal of cancerous tissue,
radiation treatment, chemotherapy and hormone therapy. Quite often a combination
of these modalities is used (see e.g. (2)). The modelling of the expected treatment
success by radiation treatment is an excemplary showcase of cross fertilization be-
tween ecology and cancer modelling. The quantity of interest is the tumor control
probability (TCP). In its simplest form it is given by the linear quadratic model (63)

TCP = e−S(D), S(D) = N0e−αD−βD2
,

where N0 denotes the initial number of tumor cells, S(D) denotes the surviving
fraction of a treatment with dose D, and α and β are the radiosensitivity parame-
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Fig. 1 Schematic representation of the relations between the cancer hallmarks, ecological pro-
cesses, and mathematical modelling. The blue numbers 1-10 refer to the hallmarks as described by
Hanahan and Weinberg (24) and the green letters a-k refer to the ecological processes as listed
above. The red hexagons relate to biological or ecological processes that have been analyzed
through mathematical modelling. The arrows indicate what kind of information from experiments
or observation is used to inform the corresponding models. There are many more feedback loops,
from modelling to biology, which we needed to omit due to readability.

ters, which depend on the type of tissue and the type of cancer. The TCP describes
the probability that a tumor is eradicated by a given treatment. Mathematically, the
TCP is the same object as the extinction probability, which describes the probability
that a certain species of interest (for example an endangered species (48)) goes ex-
tinct. Kendal (37) developed a birth-death framework for the extinction probability,
which since has been developed as a more accurate TCP model than the above lin-
ear quadratic model. The mathematical framework comes directly from ecological
applications, but the interpretations, and some of the details are specific to can-
cer modelling. This direction of research has blossomed in beautiful theories on
brith-death processes and branching processes, which are able to include cell cycle
dynamics and differential radiosensitivities depending on the cell cycle state (see
(66; 61; 26; 25; 43; 31; 22)) In a recent PhD thesis, Gong (21) included cancer stem
cells into the TCP models and she confirmed that it is critical to control the stem
cells for treatment to be successful. First studies have shown that the above TCP
models are powerful tools in the prediction and planning of radiation treatments
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Hallmark Cancer Process Ecological Process Typical Model
1. sustained prolif. tumor growth population growth ODE
signalling (d) food chains
2. avoidance of tumor growth population growth ODE
growth suppressors (d) food chains
3. resistance to death tumor growth population growth ODE,

(e) extinctions stochastic processes
4. immortality tumor growth population growth ODE

(e) extinctions
5. angiogenesis tumor (j), (k) spatial PDEs

vascularization heterogeneity stochastic processes
6. invasion metastasis tumor spread (i), (h) population PDEs

spread stochastic process
7. genome instability carcinogenesis (a) evolution integral equations

adaptive dynamics
8. cellular energetics competition with (b) competition dynamical systems

healthy tissue
9. inflammation immune response (c) predator prey and dynamical systems

and biological control
10. avoidance of immune response (c) predator prey and dynamical systems
immune destruction biological control
Additional feature
Cell cycle cell cycle specific (f) structured populations PDEs

sensitivities
treatment tumor control (l) control of biological optimal control

species and harvesting problems
periodic forcing circardian rythms (g) seasonality nonautonomous ODEs

Table 1 Similarities between the hallmarks in oncology to ecological mechanisms and typical
mathematical models. ODE refers to ordinary differential equations and PDE to partial differential
equations. The numbers 1.-10. relate to the hallmarks of Hanahan and Weinberg and the letters
(a)-(l) relate to the ecological process as listed above.

((22; 61)), however, further studies of their qualitative properties and further data
analysis is needed.

Ecologists have long assessed the probability of local extirpation of a species
of interest using the method of population viability analysis (PVA). This mathe-
matically depicts the birth and death process via a stochastic process with drift, as
described by a partial differential equation. Here hitting probabilities and times to
extinction can be calculated based on classical diffusion theory (57). More recently
this approach has been modified to address to the problem of preventing establish-
ment of a species, rather than preventing extinction of a species. Here the goal is
to determining how to prevent introduced exotic species establishing as an invader,
with the goal of making them go extinct (9). This approach shares much with that
of controlling cancer.

In a spatial context, ecological modellers have investigated the problem of opti-
mal spatial control of an invader, determining the size and duration of treatment
needed to spatially control the spread of an invader as it moves across a land-
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scape (54; 12). This approach has parallels with the issue of optimal radiation treat-
ment for controlling the spread of a cancer tumour. The optimization of chemother-
apy has been the focus of many research groups around the world, for example:
Swierniak (Poland); Agur (Israel); Ledzewicz, Schaettler (USA); d’Onofrio, (Italy).
A common theme is the occurrence of resistance. We expect that the above men-
tioned evolutionary theories, can help to better understand the process of tumor
resistance.

As outlined above, the understanding of cancer as an ecological system imme-
diately suggests the application of combination therapies including chemotherapy,
hormone therapy and radiation. Mathematical optimization of combination thera-
pies has not been carried out in detail but it will be a focus for future studies (2).

Evolution

The important role of mutations and genetic information in carcinogenesis and tu-
mor development is well established. Hanahan and Weinberg (24) include genetic
instability as one of the enabling hallmarks, and much of modern cancer research
is focussed on gene expressions. However, knowing the genes will not suffice to
understand and control cancer. As Gatenby wrote in Nature Reviews 2011 (20) on
p. 237:

A full understanding of cancer biology and therapy through a cataloguing of the cancer
genome is unlikely unless it is integrated into an evolutionary and ecological context.

The mathematical modelling of evolution in cancer is in full swing and many meth-
ods from ecological modelling are already implemented into cancer modelling.
Nagy (49) wrote a review highlighting recent success in the modelling of cancer
evolution; Merlo et al (46) explain cancer as an evolutionary process, and Gatenby
(19; 18; 20) highlight the interaction between evolution, selection and the tumor
microenvironment. Enderling et al (10) used the genetic makeup of tumor cells to
successfully model re-occurence of breast tumors. An emerging focus of interest is
the role played by cancer stem cells (8; 11; 32).

The mathematical modelling of evolution, selection, mutation, and gene expres-
sions has a long history in ecology (34). Sophisticated theories include models for
adaptive dynamics (6), concepts of evolutionary stable strategies (44), game theo-
retic approaches (5), and analysis of phylogenetic trees and speciations. Many of
these are currently discussed in the context of cancer, in particular to understand
development of drug resistance during treatment (38; 35).

The evolutionary theories are strongly connected with all of the other cancer
hallmarks. Spatial structure leads to selection pressures on the tumor; spatial niches
might arise, where metastasis can form. Related to treatment, each treatment agent
forms a selection pressure on the tumor and often resistant tumors develop as a result
of treatment.
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An important difference between ecology and cancer arises related to the relevant
time scales. A generation in a developing tumor can be as short as one cell division
cycle. i.e. 1/2 day. Hence selection, adaptation and genetic drifts will show up very
quickly. Also, a tumor does not have a long ancestry, which goes back for thousands
of generations. Finally, the outcome of a tumor in general, is death and destruction.
Hence concepts of survival and fitness need to be understood in the correct context.

Models for cell movement and invasions

The invasion of cancer into healthy tissue is one of the hallmarks of cancer, as de-
scribed by Hanahan and Weinberg (24). It is often the last step of a malignant tumor
and leads to metastasis and to eventual death of the patient. Recent mathematical
modelling has focused on various aspects of tumor invasion. Models are of the form
of advection-reaction-diffusion equations and transport equations (55) on the one
hand and individual based models (cellular automata (29), Potts model etc, (56)) on
the other. The choice of model is largely guided by the available data.

For example, in the lab of Friedl and Wolf (16; 17) in Nijmegen in The Nether-
lands, individual moving cancer metastasis are visualized by confocal microscopy.
Parameters such as mean velocities, mean turning rates and turning angle distri-
butions can be measured. Suitable models on this microscopic scale are individual
based models (56), transport equations (30), or stochastic processes (51). The sit-
uation is similar in ecology, where individual movement can be measured through
GPS tracking, for example, and also entire populations are observed (e.g. via re-
mote sensing). In ecology a whole range of models is used, from individual based
models to population models employing the Fokker Plank equations. Here the chal-
lenge arises to combine these approaches and to carefully investigate the transition
between scales.

On the other hand, macrospcopic data are available that measure the extent of
a tumor as a whole. For example MRI imaging of glioma, which show tumor re-
gions and the corresponding edema. For these types of data, we use macroscopic
models such as advection-reaction-diffusion models (53). This process is similar to
the biological invasion of an introduced pest species. Here ecologists have a his-
tory of characterizing the invasion process by a spreading speed that summarizes
the rate at which the population spatially colonizes into the new environment. The
approach of using a spreading speed was first pioneered by R.A. Fisher (14) for
the spread of an advantageous gene into a new environment, and was later applied
in an ecological context by Skellam (59) and many others. It has been modified
to include the effects of ecological interactions, such as competition, predator-prey
and parasite (58). More recently authors have shown how long-distance dispersal
can dramatically increase spreading speeds (40) and have also assessed the sensitiv-
ity of the spreading speed to life history and dispersal parameters (50). We believe
that the metastasis stage in cancer is very similar to the biological invader popula-
tion with long-distance dispersal, and that the assessment of sensitivity of spreading
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speeds to local physiological conditions may give new insights into the control of
cancer spread.

Related to glioma growth, in recent studies (39; 36; 62; 53), it has been shown
that reaction-diffusion models can be used to describe glioma growth in the hetero-
geneous environment of the brain. The brain is made out of white and grey matter.
While the grey matter is mostly homogeneous, the white matter is a fibrous struc-
ture. Tumor cells are known to use these fibrous structures to invade new areas. In
this context we encounter anisotropic diffusion equations describing different mo-
bility in different directions of the tissue. These models have not yet been analysed
in depth and first results show the ability to create unexpected spatial patterns (see
e.g. (52; 33)). Interestingly, non-isotropic diffusion models are used to model wolf
movement in habitats with seismic lines (45; 33), and again, cross fertilization is
imminent.

An important difference between tumors and species arises in relation to the sur-
rounding tissue. A tumor lives in a tissue that consists of healthy cells, blood vessels
and structural components of the extracellular matrix (ECM). Hence a growing tu-
mor will exert stress onto the tissue and be exposed to stress from the tissue. The
inclusion of these physical properties is challenging and first attempts have been
made by Loewengrub et al. (64; 65), Preziosi et al. (47) for tumor growth and by
Chaplain and Anderson et al. for angiogenesis (4). These models take the form of
continuum mechanics equations and a whole new skill set is needed to study these
models. A careful physics based modelling of tumors in tissue, including the appro-
priate mechanics, is a necessity and a challenge for modern cancer research.

4 Conclusion

Understanding the dynamics of cancer is a major challenge for clinicians. The move
towards process-oriented cancer models raises many mathematical and modelling
challenges. Indeed, it is often the case that even small changes in model formulation
can render a model difficult if not impossible to analyse. Under these circumstances
it is natural to draw broadly on the collective knowledge of the research community,
embracing results from research problems on similar processes that have arisen in
different contexts. Here mathematical ecology has a lot to offer, and the potential
impact of moving in this direction of research is imminent.

The goal of this paper is to promote the cross disciplinary exchange of ideas and
encourage the reader to assess how methods from one area can be made available
to another area. We have made a first step in identifying common mathematical the-
ories and problems and also to identify important differences between ecology and
cancer. However, there are many more connections that can be made. Most impor-
tantly, we hope that this work will provide a new approach to harness the powerful
mathematical tools used in ecology to further advance the treatment planning of
cancer.
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Glycosylation: a phenomenon shared by all
domains of life

Anne Dell and Federico Sastre

1 An overview

The genome sequencing projects of the past two decades have yielded many sur-
prises, the most startling of which is unquestionably the revelation that the total
number of genes in humans is not very different from many model organisms such
as worms, fruit flies and simple plants. This discovery has cast a spotlight on the
correlate that biological complexity is not linearly related to the number of genes
among species. Why might this be the case? A variety of explanations can be of-
fered, arising from different fields of biological research. For example, molecular
biologists might suggest transcriptional regulation or epigenetic modifications as
key factors. Others would cite alternative splicing. We, too, believe that these phe-
nomena contribute to biological complexity. Nevertheless we would argue that the
greatest amplification of genomic information occurs after genes have been trans-
lated into proteins when the latter become modified by a myriad of functionalities.
Moreover, one type of post-translational modification, namely glycosylation, results
in the greatest diversity of the products of gene expression in all forms of life (1).

Today it has been well-established that protein N- and O-glycosylation (the co-
valent attachment of carbohydrate sequences to the side-chains of asparagine and
serine or threonine, respectively) is a phenomenon shared by all domains of life.
In addition, protein glycosylation has been demonstrated to be an essential require-
ment, rather than just an intriguing decoration. For example, correct glycosylation
ensures that the plethora of proteins which eukaryotic cells use to transmit, receive
and respond to chemical, electrical and mechanical signals, are expressed in func-
tionally active forms in the right places. The information such glycoproteins mediate
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is essential for cells to pass through the different stages of development that occur
in an organism (1; 2).

Carbohydrates have enough structural diversity to play a pivotal role as informa-
tional molecules on cell surfaces 1.

Fig. 1 Structure and symbolic representations of common carbohydrates. Glucose is central to
carbohydrate biosynthesis because it is made de novo from carbon dioxide and water during pho-
tosynthesis.

Importantly, they are in ”the right place” to act as such. All eukaryotic cells are
coated with a carbohydrate layer, referred to as the glycocalyx. It consists of glyco-
proteins and glycolipids embedded in the cell membrane, together with proteogly-
cans, another class of carbohydrate biopolymer, which may be loosely associated
with the eukaryotic cell surface. Prokaryotes also express glycoproteins on their
surfaces. Among the prokaryotic glycoproteins, the best understood are S-layers,
pilins and flagellins, plus a selection of cell surface and secreted proteins which
are known to be involved in adhesion and/or biofilm formation (3; 4). Significantly,
complex carbohydrates are often highly branched and each residue can be linked
to another in any of several positions on each sugar ring. This allows the formation
of a large number of oligosaccharide structures from a relatively small repertoire of
building blocks. Indeed even greater diversity is often conferred by the addition of
functional groups such as sulfates, phosphates, acetyl and methyl groups.
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How do carbohydrates on cell surfaces fulfil their ”information” roles? This is
most often achieved by engagement with partner molecules on other cells thereby
triggering adhesive and/or signalling events. These carbohydrate binding partners
are called lectins (5). Thanks largely to the Consortium for Functional Glycomics
(CFG) (which was funded by the US National Institutes of Health to provide tools
and resources to the international research community to understand the role of
carbohydrate-protein interactions), scientists from all disciplines can readily access
information pertaining to how surface carbohydrates and complementary lectins on
opposing cell surfaces mediate cell-to-cell recognition. Thus the CFG website (2)
provides a rich source of information and data which facilitates the engagement of
researchers, unfamiliar with carbohydrates, with experts working in the field of gly-
cobiology. 2 illustrates several of the best understood biological interactions where
carbohydrate-lectin recognition plays a central role. The meaning of the symbols
used in the figure is explained below.

Fig. 2 Glycan-lectin recognition is key to cell-to-cell communication.
. . . . .
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Cell surface glycoprotein

High mannose N-glycan with 7 mannosyl
residues.

Lewisx O-glycan

Sialyl Lewisx O-glycan (6)

Sialylated O-glycan

FimH adhesin of type 1 pili assem-
bled into a fibrillar tip structure of
Uropathogenic E. Coli binds a high
mannose N-glycan (7)

Haemagglutinin receptor of Influenza
virus recognizes specifically a sialyl
residue in a sialylated glycan (8)

E-selectin recognizes specifically a Sialyl
Lewisx motif. (9)

Dendritic Cell-Specific Intercellular ad-
hesion molecule DC-SIGN recognizes
specifically a Lewisx motif. (10)

Symbols used in Fig. 2

The tools of modern mass spectrometry have been crucial for unravelling the car-
bohydrate mediated processes exemplified in Fig. 2. Mass spectrometry is an enor-
mously powerful tool for high sensitivity sequencing of complex carbohydrates. Its
versatility permits the analysis of all families of glycopolymers. Moreover, complex
mixtures of glycoproteins are not a problem for mass spectrometric analysis. In-
deed, glycomic methodologies are capable of defining the carbohydrate sequences
constituting the glycocalyx of tissues or cells without the need for time consum-
ing purifications (11). Glycomics research of the past decade, much of it supported
by the CFG, has yielded substantial quantities of public data which are facilitating
worldwide research addressing the roles of carbohydrates and lectins in complex
systems (2; 12).
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We hope that those reading this article are now stimulated to learn more about
glycosylation and biological complexity. If this is the case, the CFG website is an
excellent place to start your journey (2). To whet your appetite we end our article
with an introduction to an evolving story in glycobiology which has as its central
character a famous carbohydrate moiety called sialyl Lewisx (Fig. 2).

First identified in rat brain glycoproteins in the 1970’s, this carbohydrate was
revealed, by the emerging glycomic strategies of the mid 1980’s, to be present on
human white blood cells and enriched in cancer cells. A few years later the Selectins
were discovered. These constitute a lectin family that recognise sialyl Lewisx as
their primary ligand. The Selectins play pivotal roles in lymphocyte trafficking and
recruitment of neutrophils to sites of inflammation. Their discovery energised the
field of glycobiology and spawned numerous biotech companies intent on devel-
oping new anti-inflammatories and anti-cancer agents. The high hopes for glyco-
therapeutics that prevailed in the early 1990’s continue to this day, but are now tem-
pered by realism i.e. it takes a very long time to understand the processes mediated
by carbohydrate recognition and even longer to develop effective therapies based on
intercepting these processes.

Very recently sialyl Lewisx has re-appeared in the headlines of both scientific
and lay articles. This is because of exciting discoveries concerning human repro-
duction (13). Ultra-high sensitivity mass spectrometric analyses have now provided
the first molecular insights into the recognition processes occurring at the very start
of human life, when a single sperm first engages with the surface of a human egg.
This research has shown that multiple sialyl Lewisx sequences are attached to the
proteins constituting the jelly-like coat of the human egg, which is called the zona
pellucida. Remarkably the density of sialyl Lewisx moieties on the human egg is
orders of magnitude higher than on white blood cells, consistent with it playing a
pivotal role in sperm recognition (13). Interestingly human sperm do not express any
of the known Selectins. Hence the race is now on to find the putative ”Selectin-like”
molecule on sperm that binds to the sialyl Lewisx sequence on the human egg.
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Quantitative approaches to heterogeneity and
growth variability in cell populations

Priscilla Macansantos and Vito Quaranta

1 Heterogeneity and growth variability

Clonal heterogeneity in cell populations with respect to properties such as growth
(Figure 1), motility (Figure 2), metabolism or signalling (Figure 3), has been ob-
served for some time (see, e.g., Altschuler (1), Quaranta (2) and references therein).
However, quantitative evaluation of this cell-to-cell variability (heterogeneity) poses
technical challenges that only recently are being overcome (1), (2). Furthermore,
mathematical foundations for interpreting these quantitative experimental obser-
vations of heterogeneity are in need of development. Far from being exclusively
academic, a mathematical theory of cellular heterogeneity could have fundamental
implications, similar to theory in population biology or ecology (3). For instance,
theory of cell population growth variability, coupled to experimental measurements,
may in the long term be crucial for an in-depth understanding of physiological pro-
cesses such as stem cell expansion, embryonic development, tissue regeneration, or
of pathological ones (e.g., cancer, fibrosis, tissue degeneration).

Here, we focus on recent advances, both theoretical and experimental, in quan-
tification and modeling of the clonal variability of proliferation rates within cell
populations. Our aim is to highlight a few stimulating examples from this fledgling
and exciting field, in order to frame the issue and point to challenges and opportu-
nities that lie ahead. Furthermore, we emphasize work carried out in cancer-related
systems. As our aim is not an exhaustive review, we apologize in advance for in-
evitable omissions.
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Variability of growth rates, among other indicators of heterogeneity in growth
kinetics of individual tumours, has long been detected, but precision in quantifica-
tion may have been made possible only in the past few years by methods devel-
oped by, among others, Quaranta and his group (see (2), (4)). For instance, a team
from Verona, Italy, quantified growth variability of tumour cell clones from a human
leukaemia cell line, by cloning Molt3 cells, and measuring the growth of 201 clonal
populations by microplate spectrophotometry. Growth rate of each clonal popula-
tion was estimated by fitting data with the logistic equation for population growth
(5). Their results indicated that growth rates vary between clones. Six clones with
growth rates above or below the mean growth rate of the parent population were
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further cloned, and the growth rates of their offspring were measured. Researchers
noted that distribution of subclone growth rates did not significantly differ from that
of the parent population, supporting the conjecture that growth variability has an
epigenetic origin (5). Such variability in growth rates may be amenable to further
quantitative analysis of population dynamics with analytic tools developed in Tyson
et. al. (4).

In the paper ”Characterizing heterogeneous cellular responses to perturbations”
(6), Slack et. al. approached the challenge of heterogeneity with a mathematically-
appealing assumption that cell populations may be described as a mixtures of a
limited number of phenotypically distinct subpopulations. Methods for character-
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izing spatial heterogeneity observed within cell populations are developed, starting
from the extraction of phenotypic measurements of the activation and colocaliza-
tion patterns of cellular readouts from large numbers of cells in diverse conditions.
Phenotypic stereotypes are identified within the total population, and probabilities
assigned to cells belonging to subpopulations modeled on these stereotypes. Each
population or condition may then be characterized by a probability vector - its sub-
population profile - estimating the number of cells in each subpopulation. Responses
of heterogeneous cellular populations to perturbations (e.g., anti-cancer drugs) are
summarized as probabilistic redistributions of these mixtures. In the study by Slack
et al, this computational method was applied to heterogeneous responses of can-
cer cells to a panel of drugs. The finding is that cells treated with drugs of similar
mechanism exhibited the same pattern of heterogeneity redistribution.

In subsequent work from this group, Singh et. al. (7) employed the same compu-
tational framework to investigate whether patterns of basal signaling heterogeneity
in untreated cell populations could distinguish cellular populations with different
drug sensitivities. As in the earlier study, cellular heterogeneity in populations was
modeled as a mixture of stereotyped signaling states. Interestingly, the researchers
found that patterns of heterogeneity could be used to separate the most sensitive
and most resistant populations to the drug paclitaxel within a set of H460 lung
cancer clones and within the NCI-60 panel of cancer cell lines, but not for a set
of less heterogeneous immortalized noncancer HBEC (human bronchial epithelial
cell) clones. Stockholm et. al. (8) used both computer simulation and experimen-
tal analysis to address the issue of the origin of phenotypic differentiation in clonal
populations. Two models - referred to as the ”extrinsic” and ”intrinsic” models -
explaining the generation of diverse cell types in a homogeneous population, were
tested using simple multi-agent computer modeling. The approach takes each cell
as an autonomous ”agent”, and following defined rules governing the action of in-
dividual agents, the behavior of the system emerges as an outcome of the agents’
collective action.

As the term suggests, the ”extrinsic” model attributes the occurrence of a pheno-
typic switch to extrinsic factors. Identical cells may become different because they
encounter different local environments that induce alternative adaptive responses.
Changing its phenotype, the cell contributes to changes in the local environment,
inducing responses in surrounding cells, and ultimately influencing the dynamics of
the cell population. The second model assumes that the phenotype switch is intrin-
sic to the cells. Phenotypic changes could occur even in a homogenous environment
and may result from asymmetric segregation of intrinsic fate determinants during
cell division that lead to the change in gene expression patterns, (8).

The Stockholm study cites an experiment where two subpopulations appear
spontaneously in C2C12 mouse myogenic cells - the main population (MP), and a
side population (SP). The two cell types are phenotypically distinct, and researchers
take off from the lab experiment to perform agent-based modeling computer simu-
lation on two cell types subject to two sets of hypotheses (the extrinsic and intrinsic
models). The models are built on a limited number of simplified assumptions about
how individual cells migrate, interact with each other, divide and die. The agent-
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based model assumes that each cell divides at each iteration step but survival of
daughter cells depends on local cell density. In the intrinsic model, the phenotypic
switch occurs under the assumption of cell autonomy, with the environment playing
no ostensible role in the switching; rather, switching from one cell type to the other
occurs at fixed probabilities. In the extrinsic model, local cell density determines
phenotypic switching, hence local density is surrogate for the complex of factors af-
fecting cell survival, such as gradient of nutrients, oxygen, secreted factors, etc, and
cell types represent two forms of adaptation to high and low density environments.
The extrinsic and intrinsic hypotheses were implemented by varying the parameters
(assuming cell migration velocities within experimentally guided limits of values).
Simulations for the intrinsic model result in the two cell types being distributed ran-
domly both during growth and equilibrium, suggesting that the randomness of cell
type spatial distribution is characteristic of the intrinsic model. On the other hand,
the spatial distribution of cells resulting from simulations of the extrinsic model
is different from that in the intrinsic model, with cluster formation as an observed
feature. Moreover, this feature is robust in the range of parameter values considered.

Both intrinsic and extrinsic models generate in the simulations heterogeneous
cell populations with a stable proportion of the two cell types. Experimental veri-
fication of model predictions, using the C2C12 myogenic cell line, indicated that
neither one of the models can fully account for the spatial distribution of the cell
types at equilibrium, as some clustering of the rare SP cell was observed in low
density regions, while distribution in high density regions was generally uniform. A
hybrid model combining both intrinsic and extrinsic hypotheses was in better agree-
ment with the clustering behavior of the rare SP cells. In the end, it is not solely the
local environment, nor, on the other hand, merely a cell-autonomous propensity for
differentiation that activates the phenotype switch. Rather, it may be a combination
of the two.

A similar ”agent” model framework is utilized in mathematical models of cancer
invasion, with emphasis on tumor microenvironment, compared in (9). In that re-
view, three independent computational models for cancer progression are discussed,
all pointing to an essential role of the tumor microenvironment (mE) ’’in eliciting
invasive patterns of tumor growth and enabling dominance of aggressive cell phe-
notypes.” Both the evolutionary hybrid cellular automata (EHCA) and the Hybrid
Discrete Continuum (HDC) models treat cells as points on a lattice. In the case of
the EHCA, the grid itself represents the mE, and the only variable on the grid, apart
from cells, is the concentration of oxygen, with a partial differential equation con-
trolling the oxygen dynamics in space and time. In the HDC model, the mE consists
of a two-dimensional lattice of extracellular matrix upon which oxygen diffuses
and is produced/consumed, and matrix degrading proteases are produced/used. The
HDC model has the mE variables controlled by reaction-diffusion equations with
tumor cells occupying discrete lattice points. Notably, a key feature of the HDC
model is that the tumor cell population is heterogeneous, each cell phenotype being
defined from a pool of 100 pre-defined phenotypes within a biologically relevant
range of cell-specific traits. Mutation is incorporated into the model by assigning to
cells a small probability of changing some traits at cell division. If a change occurs,
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the cell is randomly assigned a new phenotype from the pool of about 100. Taken
together with a third model - the Immersed Boundary method (IBCell) - the models
describe the process of cancer invasion on multiple scales: The EHCA at the molec-
ular (gene expression) scale, the IBCell at the cell scale, the HDC at the tissue scale.
Though not highlighted, heterogeneity is an issue addressed in the models, with
the microenvironment driving cancer progression in a major way, and on multiple
scales. From representative simulations of the models (see (9) for details), analysis
of the effect of mE variables on tumor growth point to ”competitive adaptation to
mE conditions as a determining factor for invasion: both invasive tumor morphol-
ogy (”fingering”) and evolution of dominant aggressive clonal phenotypes appear
to occur by a process of progressive cell adaptation to mE’s that support sustained
competition between distinct cancer cell phenotypes.”

In their 2011 paper (10) on models of heterogeneous cell populations, Hasenauer
et. al. discuss a framework for modeling genetic and epigenetic differences among
cells. With the approach to intracellular biochemical reaction networks modeled
by systems of differential equations (which may characterize metabolic networks
and signal transduction pathways), heterogeneity in populations is accounted for by
differences in parameter values and initial conditions. Using population snapshot
data, a Bayesian approach is used to infer parameter density of the model describ-
ing single cell dynamics. Using maximum likelihood methods, single cell measure-
ment data is processed for parameter density estimation; the proposed framework
includes a noise model, as well as methods for determining uncertainty of the pa-
rameter density. For computational tractability, the population model is converted
into a density-based model, where the variables are not states of single cells but den-
sity of the output (see (10) for details). Towards verifying efficacy of the proposed
modeling framework, the model of TNF (tumor necrosis factor) signaling pathway
was studied under a hypothetical experimental set-up with artificial data involving
a cell population responding to the TNF stimulus. The model, introduced in (11), is
based on known inhibitory and activating interactions among key signaling proteins
of the TNF pathway. Cellular response to the TNF stimulus has been observed to
be highly heterogeneous within a clonal population. Heterogeneity at the cell level
is modeled by differences in two parameter values, one quantifying the inhibitory
effect of NF-êB via the C3a inhibitor XIAP onto the C3 activity, and the other the
activation of I-kB via NF-kB. The authors conclude that the method yields good
estimation results.

In the abovementioned framework, the assumption was that network structure
was identical in all cells and spatial effects and stochasticity of the biochemical
reactions are negligible. Moreover, the mechanisms for cell-to-cell interactions typ-
ically characterized by differential equations, are reasonably well-understood and
formulated, from actual experiment.

In an effort to uncover sources of cell-to-cell variation, Colman-Lerner et. al.
(12) looked into cell-to-cell variability of a prototypical eukaryotic cell fate decision
system, the mating pheromone response pathway in yeast. Cell-to-cell variation was
quantified by the output in the cell-fate decision system - the pheromone response
pathway in the yeast Saccharomyces cerevisiae. The fate decision to switch from
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the normal vegetative growth to mating events including gene transcription, cell cy-
cle arrest, etc. is induced by the alpha-factor, a pheromone secreted by cells of the
mating type. Pheromone-induced expression of fluorescent protein reporter genes
was used as a readout. To dis-aggregate differences due to the operation of the sig-
nal transduction pathway from cell-to-cell differences in gene expression from the
reporters, yeast strains containing genes for the yellow and cyan fluorescent pro-
tein were generated. The analytical framework used considered the alpha-factor re-
sponse pathway and the reporter gene expression mechanism to measure its activity
as a single system, with two connected subsystems - pathway and expression. In
each of the two subsystems, two sources of variation are considered - stochastic
fluctuations and cell-to-cell differences in ”capacity”, depending on number, local-
ization and activity of proteins that transmit the signal (pathway capacity) or express
genes into proteins (expression capacity). About half of the observed variation was
attributed to pre-existing differences in cell cycle position at the time of pathway
induction, while another large component of the variation in system output is due
to differences in cell capacity to express proteins from genes. Very little variation
is due to noise in gene expression. Although the study did not specifically refer
to molecular mechanisms underlying cell-to-cell variation, it does provide a basis
for further investigation into these mechanisms, including, as mentioned elsewhere,
network architecture.

Heterogeneous cell populations have been the subject of mathematical modeling
since about the 1960s, with the cell population balance (CPB) approach by Freder-
ickson and a few others (see (13) for references). The models use partial integro-
differential equations for the dynamics of the distribution of the physiological state
of cells and ordinary integro- differential equations to describe substrate availabil-
ity. For CPB models, heterogeneity arises from physiological functions leading to
different growth and division rates of the cells, as well as for unequal partition-
ing effects. When the physiological state vector (whose components include in-
tracellular content, morphometric characteristics like size) has two or more com-
ponents, the approach leads to multidimensional models that are highly unwieldy
computationally. Stamatakis notes that CPB models cannot account for the inherent
stochasticity of chemical reactions occurring in cellular control volumes or stochas-
tic DNA-duplication. To account for this stochasticity, refinements were considered
by Gillespie and others (see (13) for references) using the chemical master equation.
A relatively recent approach, referred to as the Langevin approach, uses stochastic
differential equations in modeling stochasticity in intracellular reactions. In recent
work Stamakis and Zygourakis (2010) ((13) propose a mathematical framework to
account for all the various sources of cell population heterogeneity, namely growth
rate variability, stochasticity in DNA duplication and cell division, and stochastic
reaction occurrences for the genetic network, through the cell population master
equation (CPME) that governs the temporal dynamics of the probability of finding
the cell population at a specific state, together with a Monte Carlo algorithm that
enables simulation of exact stochastic paths of this master equation. Employing the
population balance framework, each cell is described by a state vector containing
information about its chemical content and morphometric characteristics such as
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length, etc (Stamatakis uses volume only). The state of the overall population is
given by a vector w, which reflects the number v of individual cells and the state
of each vector. The master equation is derived as a probability balance describing
the evolution of a probability distribution for the cell population, using submodels
of probability inflows and probability outflows accounting for chemical reactions,
DNA duplication, cell growth (here using exponential growth), a propensity func-
tion (for cells to divide).

In an earlier study, Mantzaris (14) also looked into models of cell population
heterogeneity, incorporating into a prior deterministic single-cell model, two extra
parameters (one, a rate of operator fluctuations) to quantify two main sources of
stochasticity at the single cell level for the reaction network, namely small num-
ber of molecules and slow operator fluctuations. Starting from a deterministic cell
population balance model (DCPB), Mantzaris used stochastic differential equations
to refine the CPB model (to account for extrinsic and intrinsic sources of popula-
tion heterogeneity - respectively, the unequal partitioning between daughter cells of
intracellular components on division, and random fluctuations in reaction rates reg-
ulated by a small number of regulatory molecules) through the Stochastic Variable
Number Monte Carlo method/model. Simulations on a genetic network with posi-
tive feedback revealed differences arising from different sources of stochasticity on
regions of the parameter space where the system is bistable.

Although much of the modeling of heterogeneity has not specifically investigated
implications on cancer treatment, a 2012 study (see (15)) looks into cell-cycle het-
erogeneity and its effects on solid tumor response to chemotherapy. In their paper,
Powathil et al raise the difficulty of treating cancer with chemotherapeutic drugs due
to the development of cell-cycle mediated drug resistance. Elsewhere (see references
in (15)) it has been suggested that this may be due to the presence of functionally
heterogeneous cells and can be addressed to some extent by using combinations of
chemotherapy drugs that target different phases of the cell-cycle kinetics. Hence,
it is important to study and analyze the underlying heterogeneity within a cell and
within a solid tumour due to the presence of the unfavourable microenvironment
and the cellcycle position. A hybrid multi-scale cellular automaton model is used to
simulate the spatio-temporal dynamics at the cell level, incorporating feedbacks be-
tween these cell level dynamics and molecular variations of intercellular signalling
and macroscopic behaviour of tissue oxygen dynamics. Each cell has its own cell-
cycle dynamics and this is incorporated into the CA model for cellular proliferation
using a set of ordinary differential equations, from an early model by Tyson and
Novak (16). Chemical processes within the cell are quantified using concentration
of key chemical components, considered as functions of time, and a 6-variable sys-
tem of differential equations describe the processes of production, destruction and
interactions. These kinetic relations are then used to explain transitions between two
steady states - the G1 and the S-G2-M state, assumed to be controlled by cell mass.
With cells located spatially in the dynamic microenvironment, depending on vari-
ations in oxygen concentration and with drug distribution dynamics in the grow-
ing tumor also affecting the state of individual cells, partial differential equations
(for oxygen, a reaction diffusion equation) model changes in oxygen and drug con-
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centration. In simulating the model, parameters were chosen based on earlier work
(mainly from Tyson and Novak); notably, to account for the ”natural” variability be-
tween cell growth rates, and to have a non-synchronous cell population, a multiple
of the value from a probability density function with uniform distribution between
-1 and 1 is added to an identified value for growth rate, effectively incorporating cell
cycle heterogeneity. Computational simulations were run first on cell-cycle and oxy-
gen tumor growth, assuming zero drug concentration, and subsequently on tumours
treated with cell-cycle specific drugs. The results revealed that cytotoxic effect of
combination therapy depends on timing of drug delivery, time-delay between doses
of chemotherapeutic drugs, and cell-cycle heterogeneity. Not surprisingly, drug ef-
fectiveness also depends on distribution of tumor cell mass as it affects the tumor
microenvironment and drug distribution. The current direction towards patient spe-
cific optimal treatment strategies seems to be supported by the model simulations.
It is worth noting that non-synchronous cell population can be parameterized from
experimental data (17) due to recent automated microscopy advances, making it
possible to validate models such as the one described by Powathil et al (15).

In a recent review by Bendall and Nolan (18), the authors assert that ”stem cell
hierarchies, transcription start sites, cell signaling pathways (and more) all func-
tion against a backdrop that assumes that carefully orchestrated single-cell stochas-
tics, in concert with mass action, is what determines outcome.” Since all kinds of
heterogeneity may drive treatment decisions, it is crucial to develop better tech-
nologies to study heterogeneity in single-cells. Notably, the statement is made that
recent research indicate that the biology of single cells ”is rarely deterministic.”
Snijder and Pelkmans (19) take the view instead that ”a large part of phenotypic
cell-to-cell variability is the result of deterministic regulatory processes.” Although
not necessarily in conflict, these seemingly opposing views point to the necessity
to further investigate various and diverse aspects and mechanisms driving pheno-
typic heterogeneity in cells and cell populations. As Snijder points out, population
context has been shown to contribute in major ways to cellular behavior, includ-
ing sporulation, genetic competence and motility, giving rise to adaptation in gene
transcription, protein translation, cellular growth, rate of proliferation, sensitivity to
apoptosis, metabolic activity, cell shape and/or cell polarization. These adaptations
cause cells themselves to alter population context, eventually determining single-
cell distribution of phenotype properties in a population. Such complex feedback/
regulatory mechanisms may involve many entities and interactions, in the absence
of a full understanding of which, a stochastic distribution may somewhat account
for the variability (20).

2 Conclusions

What emerges from the models so far developed is that apparently ”stochastic/variable
behavior” in single cells and populations can be reasonably quantified, if not fully
understood. In many of the above-mentioned mathematical models for population



Quantitative approaches to heterogeneity in cell populations 43

heterogeneity, the key to characterization of population behavior is a fairly holis-
tic understanding of the key ”players” (cells), their environment, and reactions and
feedback mechanisms among components. Integration of these theoretical and quan-
titative tools will be paramount for distinguishing between relevant and noisy het-
erogeneity (1). While this field of investigation is still in its infancy, it is not difficult
to imagine the impact it will have on our understanding of cellular response to per-
turbations, including drugs.

3 Figure Legends

Figure 1.
Cell-to-cell variability of intermitotic times within human cultured cell lines.
Note that the heterogeneity of intermitotic times within seemingly homogeneous
isogenic cell lines (populations) is quite broad, and distributed in non-Gaussian
fashion. Intermitotic time encompasses hours from the end of one cell division
to the start of the successive one. Single cells were tracked by automated confo-
cal microscopy collecting images at regular intervals by automated microscopy as
described (4). Intermitotic times were calculated as described (4) and fitted to an
exponentially modified Gaussian (EMG) distribution http://en.wikipedia.
org/wiki/Exponentially modified Gaussian distribution.
Human cultured cell lines are as follows: A375, melanoma; PC9, non-small cell lung
carcinoma; MCF10A, immortalized non-tumorigenic breast epithelium; CA1D, H-
Ras transformed MCF10A. n = number of cells tracked; µ ,σ and κ are parameters
for the EMG distribution; ks p-value was calculated by the Kolmogorov-Smirnoff
statistic test.
Figure 2.
Cell-to-cell speed variation within mammary gland human cell lines.
Spontaneous, non-directed motility was tracked in over 1,500 individual cells from
one immortalized (MCF10A) and two transformed MCF10A-derived (AT1 and
CA1d) breast epithelial cell lines. Cell-to-cell variability of motility was evaluated
with respect to speed under two culture conditions, full-supplement or serum/EGF-
depleted media, respectively. (A) Box-and-whisker plot of individual cell speed
(color-coded by individual experiment). (B) Population histogram of frequency (the
number of cells) and the normal (Gaussian) fit for each set of data (based around the
average). Shapiro-Wilks W tests confirmed that distributions are non-normal and
positively skewed (more cells are likely to move at lower speeds) with long tails (at
higher speeds).
Figure 3.
Single cell variability in metabolic and signaling activity.
(A) Single-cell measurements of glucose uptake using 2- deoxy- 2- [(7- nitro- 2, 1,
3- benzoxadiazol- 4- yl)amino]- D- glucose (2-NBDG). Fluorescent representative
images of CA1d (right, higher magnification) after 10 min incubation with 300µM

http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution�
http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution�
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of 2-NBDG as described in (21). The variability in subcellular distribution of the
probe was apparent in CA1d cells (right panel).
(B) Staining patters of BT-474 lapatinib resistant cell line reveals variability (het-
erogeneity). BT-475LR cell lines were plated overnight and treated with 1 µM
lapatinib for 1 hour at 37C. Cells were fixed and stained with fluorescent probes
(DNA/pAKT(pS473)/Ac-Histone3) and imaged with a Zeiss confocal microscope
(LSM 510).
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A stochastic model of glioblastoma invasion: the
impact of phenotypic switching

Philip Gerlee and Sven Nelander

Abstract In this chapter we present a stochastic model of glioblastoma (brain can-
cer) growth and invasion, which incorporates the notion of phenotypic switching
between migratory and proliferative cell states. The model is characterised by the
rates at which cells switch to proliferation (qp) and migration (qm), and simulation
results show that for a fixed qp, the tumour growth rate is maximised for interme-
diate qm. We also complement the simulations by deriving a continuum description
of the system, in the form of two coupled reaction-diffusion PDEs, and subsequent
phase space analysis shows that the wave speed of the solutions closely matches that
of the stochastic model. The model thus reveals a possible way of treating glioblas-
tomas by altering the balance between proliferative and migratory behaviour.

1 Introduction

Tumour growth is dependent on numerous intra-cellular and extra-cellular pro-
cesses, such as an elevated rate of proliferation, evasion of apoptosis and angiogen-
esis (5). Out of these, proliferation has traditionally been singled out as the most im-
portant, and has generally been the target of anti-cancer therapies. However, recently
there has been a growing interest in the impact of cancer cell motility, since it under-
lies the invasive nature of tumour growth. This process is especially relevant in the
case of glioblastoma, which generally exhibit diffuse morphologies stemming from
the high motility of individual glioma cells. Recent experimental work suggests that
migration and proliferation in glioma cells are mutually exclusive phenotypes (2),
where the cells move in a saltatory fashion interspersed by periods of stationary
behaviour during which cell division occurs. In this chapter we explore the theoret-
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ical implications of this observations using a stochastic individual-based model. In
particular we are interested in how the rates of phenotypic switching (microscopic
parameters) influence the growth rate of the tumour (a macroscopic property).

Before proceeding to the model description let us briefly mention that glioblas-
toma has a long history of mathematical modelling dating back to the seminal
work of Murray et al. (see for example (8), chapter 11 for an in-depth review),
who employed a continuous reaction-diffusion approach. Recently stochastic and
individual-based models have gained in popularity and several such models have
been proposed (3; 1; 6; 7).

2 Stochastic model

The cells are assumed to occupy a d-dimensional lattice with lattice spacing ∆x (we
will consider d = 1,2), containing Nd lattice sites, where N is the linear size of the
lattice and each lattice site either is empty or holds a single glioma cell. This means
that we disregard the effects of the surrounding brain tissue, such as the different
properties of grey vs. white matter (9), and the presence of capillaries which might
influence the behaviour of the cancer cells. For the sake of simplicity we do not
consider any interactions between the cancer cells (adhesion or repulsion), although
this could easily be included.

The behaviour of each cell is modelled as a time continuous Markov process,
where each transition or action occurs with a certain rate. Each cell is assumed to be
in either of two states: proliferating or migrating, and switching between the states
occurs at rates qp (into the P-state) and qm (into the M-state). A proliferating cell is
stationary, passes through the cell cycle, and thus divides at a rate α . The daughter
cell is placed with uniform probability in one of the empty 2d neighbouring lattice
sites (using a von Neumann neighbourhood). If the cell has no empty neighbours
cell division fails. A migrating cell performs a size exclusion random walk, where
each jump occurs with rate ν . Size exclusion means that the cell can only move into
lattice sites which were previously empty.

Lastly, cells are assumed to die, of natural causes, at a rate µ independent of the
cell state, after which they are removed from the lattice and leave an empty lattice
site behind. The stochastic process is depicted schematically in fig. 1, and the model
parameters are summarised in table 1.

3 Simulation results

A typical simulation outcome is displayed in fig. 2a, which shows the spatial distri-
bution of tumour cells after T = 50 cell cycles have passed. The initial condition was
a single cell in the proliferative state at the centre of the lattice, and the phenotypic
switching rates were set to (qp,qm) = (20,10). This plot gives us a general idea of
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Table 1 Summary of model parameters. All rates are given in units of cell cycle−1.

Meaning Name Value

Rate of switching to P-state qp 0-30
Rate of switching to M-state qm 0-30
Proliferation rate α 1
Motility rate ν 5
Death rate µ 10−3

Lattice spacing ∆x 20 µm

P M
: ν

µ µ

α
qp

qm

Fig. 1 Schematic describing the continuous time Markov process each cell in the model follows. A
living cell can be in either of two states, proliferating (P) or migrating (M), and transitions between
the states with rates qp and qm respectively. A P-cell divides at rate α while an M-cell moves with
rate ν . Both cell types die with a constant rate µ .

the dynamics of the model; the tumour grows with a radial symmetry, and exhibits
a solid core, while the tumour margin is diffuse and somewhat rugged. However, in
order to get a wider picture of the influence of the phenotypic switching rates on tu-
mour mass, we measured the number of cancer cells at T = 50 in the parameter range
0 < qp,m < 30. The result of this parameter sweep is displayed in fig. 2b and shows a
strong influence of the two parameters. For qp = 0 all cells are in the migratory state
and hence the tumour does not grow at all, while the other extreme qm = 0 gives rise
to compact tumours driven purely by cell division. These results are intuitive, but
what is more interesting is that tumour cells with intermediate switching rates are
the ones that give rise to the largest tumours. Although migratory behaviour does
not directly contribute to an increase in the number of cancer cells it has the sec-
ondary effect of freeing up space which accelerates growth compared to the tumours
dominated purely by proliferation (qm = 0). The results suggest that for each qp > 0
there is a qm 6= 0 which gives rise to a maximal tumour mass.
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Fig. 2 Growth dynamics of the model. (a) Shows the result of a single simulation of the model
for (qp,qm) = (10,20) while (b) shows the average tumour mass as a function of the phenotypic
switching rates.

4 Continuum approximation

The counter-intuitive results of the previous section spurred us to investigate the
dynamics of the model from an analytical perspective. We will here give a brief
outline of an attempt employing a continuum approximation which gives an estimate
of the tumour interface velocity as function of the model parameters. For a full
account of the derivation we refer the reader to (4).

By considering the processes which affect the cells on the lattice (proliferation,
movement, phenotypic switching and death), and by assuming independence of the
lattice sites we can derive master equations for the occupation probabilities of P-
and M-cells. By taking the appropriate continuum limit we arrive at the following
system of coupled PDEs which describe the density of P- and M-cells respectively:

∂ p
∂ t

=
α
2

(1− p−m)
∂ 2 p
∂x2 +α p(1− p−m)− (qm + µ)p+qpm (1)

∂m
∂ t

=
ν
2

((1− p)
∂ 2m
∂x2 +m

∂ 2 p
∂x2 )− (qp + µ)m+qm p. (2)

Despite its seeming complexity this system bears resemblance to the Fisher equation
(8), and similarly exhibits travelling wave solutions. It is the propagation speed c of
these solutions, that correspond to the rate of invasion, which we are hoping to
determine. With the travelling wave ansatz (z = x− ct) the above system is turned
into the following system of autonomous ODEs:
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P′ = Q
M′ = N
Q′ = 2

α(1−P−M) ((qm + µ)P−qpM− cQ−αP(1−P−M))
N′ = 2

ν(1−P) ((qp + µ)M− νM
α(1−P−M) ((qm + µ)P

−qpM− cQ−αP(1−P−M))− cN−qmP)

with boundary conditions

P(−∞) = p? M(−∞) = m? Q(−∞) = 0 N(−∞) = 0
P(∞) = 0 M(∞) = 0 Q(∞) = 0 N(∞) = 0 (3)

where (p?,m?) corresponds to the stable invaded state of eq. (1)–(2) and (0,0) is
the unstable healthy state. As in the case of the Fisher equation we find the speed of
propagation as the smallest c for which the heteroclinic orbit connecting the unstable
and stable state remains non-negative for all times (8). In our case this boils down
to a four-dimensional eigenvalue problem involving the Jacobian of the system (3),
which unfortunately does not have a closed form solution. However by fixing the
model parameters a numerical solution can easily be found.

Figure 3 shows a comparison between the wave speed obtained from the phase
space analysis and the one obtained from simulating the stochastic model. It is clear
that the analytical wave speed agrees well with the one observed in simulation, and
also that least agreement occurs for small qm when the contribution of diffusive
behaviour to growth is small.
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Fig. 3 Comparison of the wave speed obtained from the phase space analysis (solid line) and
the one observed in simulation of the stochastic model (dashed line). In (a) the switch rate to
proliferation is fixed at qp = 15, while in (b) we have fixed qm = 15.

Naturally the other parameters of the model also influence the rate of invasion.
By fixing the phenotypic switching rates at (qp,qm) = (10,10) and by varying the
other parameters (α,ν , and µ) independently the curves in fig. 4 were obtained.
From these it can be seen that for small proliferation rates we have c ∼ √α , and
for all motility rates in the range we see that c∼√ν . The death rate has a negative
impact on the wave speed, and interestingly it seems as if the system goes through a
second-order phase-transition, since above some critical µc the wave speed is equal
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to zero, and that it approaches this point with a diverging derivative dc/dµ . Upon
closer inspection we observed that c ∼ (µc− µ)β , with the critical exponent β =
0.5049± 0.0004 being independent of the other parameters, while µc is parameter
specific.
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Fig. 4 The wave speed of the propagating tumour margin as a function of (a) α , (b) ν and (c) µ .
The dashed line in the inset of (c) has slope 1/2 and shows that c∼ (µc−µ)1/2.

5 Discussion

From our simulations and analysis it is obvious that if glioma cells are engaged in
phenotypic between migratory and proliferative behaviour, then the rates at which
this occurs has a strong impact on tumour growth rate. In particular we have shown
that for each qp > 0 there exists a qm 6= 0 which maximises the tumour interface
velocity. A simple explanation of the influence the switching rates have on tumour
growth velocity, is that they change the geometry and structure of the tumour inter-
face, which in turn alters its growth velocity. A one-dimensional growth process in
which the tumour expands in a narrow channel will suffice for the illustration.

If qm = 0, then the tumour expands only through proliferation of the cells at
the interface (since interior cells cannot divide), and the interface thus moves with
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velocity α . If qm 6= 0 then cells at the interface spend some time in the motile state
and, with non-zero probability, move away from the tumour mass, freeing up space
and thus allowing previously blocked cells to proliferate. This process increases the
interface velocity, but it is also clear that for large qm the velocity is lowered, since
if qm À qp few cells are in the proliferative state and can thus take advantage of the
space created by migrating cells. From this perspective it is clear that the tumour
interface velocity will depend on qm in a non-monotone way, and in fact the phase
space analysis shows that for each qp 6= 0 the velocity c = c(qm) attains a maximum,
which occurs at qmax

m ≈ 0.5qp.
Despite its apparent theoretical nature the model could, if properly parametrised,

give indications as to the efficacy of certain therapies. It could serve as a tool map-
ping perturbations at the cellular level caused by a drug to the impact those changes
have on tumour growth rate. If a drug for example influences the rates of pheno-
typic switching, then it could potentially both increase and decrease tumour growth
rate, depending on where in parameter space the unperturbed cells are located. It
is believed that many drugs have precisely this dual impact on both proliferation
and migration, and estimating the tissue-level of these perturbations effect will be
difficult, if not impossible without the use of mathematical models such as this one.
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A hybrid model for E. coli chemotaxis: from
signaling pathway to pattern formation

Franziska Matthäus

Abstract In this article a hybrid model for the chemotactic motion of E. coli is
presented that captures a description of the internal signaling pathway as well as
the interaction of the bacteria with the surrounding ligand. The hybrid nature of the
model arises from the fact that discrete agents interact with and through an external
chemoattractant that is described as a continuous variable. Motion of the bacteria is
not restricted to the numerical grid on which the chemoattractant concentration is
defined. Local production and uptake of ligand allow a study of the effects of internal
signaling processes on pattern formation processes or on the fitness of populations
in competition for a common nutrient source. This model provides a tool to connect
individual-based models to continuous (PDE) descriptions for bacterial chemotaxis.

1 Introduction

In this paper we present a hybrid model for E. coli motion. The model is given
as a cellular automaton, providing a description of internal signaling processes of
E. coli, coupled with a continuous description (PDE) for the dynamics of external
chemical substances. The model allows to simulate movements of individual cells
as well as large-scale population behavior. It provides a tool to study bacterial pat-
tern formation processes or competition of different species under the influence of
internal signaling processes.

The choice of E. coli bacteria as a model organism is straight forward. Its chemo-
taxis signaling pathway is very simple and well understood, and several mathemati-
cal models have been developed to describe the pathway (1; 2; 10). The chemotaxis
signaling pathway of E. coli connects a membrane receptor to the flagella. The flag-
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ella can either rotate clockwise or counter-clockwise. Counter-clockwise rotation
thereby causes a (more or less) straight swim, while clockwise rotation leads to a
so-called tumble, where a new direction is chosen without translational movement.
The receptor switches between two states, active and inactive. This switching is ran-
dom, but influenced by the external ligand concentration. If the receptor is active,
it phosphorylates an enzyme CheA, which in turn phosphorylates CheY. Phospho-
rylated CheY then binds to the flagellar motor and induces tumbling. A feedback
loop involving a further enzyme, CheB, introduces memory. CheB is activated by
CheAp and, together with its antagonist, CheR, is involved in receptor methylation.
Methylation also influences the receptor’s probability to be in the active state, and
counteracts the effects of the ligand. Through this process the bacteria are able to
adapt to constant ligand concentrations, and to compare present ligand concentra-
tion to past values. This ”chemical memory” is needed for chemotaxis, if the ligand
concentration during a run of the bacterium increases, the the tumble probability
decreases, and vice versa.

There exist several agent-based models describing E. coli motion subject to in-
ternal signaling processes. AgentCell (8) relies on a stochastic simulation of the
enzymatic interactions (StochSim (11)) and is therefore computationally expensive
for larger bacterial populations. The model of Bray (3; 4) describes the signaling
pathway in terms of about 90 differential equations, and accounts also for processes
like receptor assembly. Also this model is not suitable for simulating large popula-
tions. Vladimirov et al. (17) and Curk et al. (6) developed coarse-grained models
capturing the essential behavior of the signaling pathway without details on the en-
zymatic reactions. These models, on the other hand, are very suitable for large-scale
population studies, but do not allow to study the specific influence of signaling path-
way processes on the macroscopic behavior. None of these models accounts for an
interaction of the bacteria with the ligand.

Here, we will extend a model previously developed to study the motion of E. coli
bacteria in various chemical landscapes (12). The model was used to investigate the
influence of noise in the signaling pathway on the random search behavior (13) and
the chemotactic precision. The signaling pathway is thereby described as a small
system of differential equations, comprising an equation for the m-times methylated
receptor, and the enzymes CheAp, CheBp, and CheYp. Two algebraic equations
describe the probability of the receptor to be in the active state, and the tumbling
probability depending on the concentration of CheYp. In the following sections we
will describe the model and the extension that describes interaction with the ligand
(production, uptake). First simulations with the extended model show a chemotactic
pattern formation process for a small number of bacteria.
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2 Methods.

ODE system describing the signaling pathway.

The internal signaling pathway of the bacteria is described as a system of ordinary
differential equations, adapted from (10). We denote the m-times methylated recep-
tor by Tm, and the concentration of phosphorylated form of CheA, CheB and CheY
by Ap, Bp and Yp, respectively.

dTm

dt
= kRR

Tm−1

KR +T T + kBBp
T A

m+1

KB +TA
− kRR

Tm

KR +T T (1a)

−kBBp
T A

m

KB +TA
(1b)

dAp

dt
= kA(AT −Ap)TA− kY Ap(Y T −Yp)− k′BAp(BT −Bp) (1c)

dYp

dt
= kY Ap(Y T −Yp)− kZYpZ− γZYp (1d)

dBp

dt
= k′BAp(BT −Bp)− γBBp (1e)

The model is extended by two algebraic equations: pm(L) describes the probability
of the m-times methylated receptor to be active under a given ligand concentration
L:

pm(L) = Vm

(
1− LHm

LHm +KHm
m

)
. (2)

The last equation connects the concentration of CheYp to the tumbling probability
τ:

τ =
Yp

Hc

Yp
Hc +KHc

c
. (3)

For the values of the parameters see (12). The tumbling probability depends on the
internal concentration levels of all enzymes involved in the chemotaxis signaling
pathway, and on the external ligand concentration. Bacterial trajectories are gener-
ated from the output variable (τ) in the following way. While swimming, the bacteria
preserve the direction. During a tumble, a new direction is chosen randomly, follow-
ing a Γ -distribution with shape parameter 4, scale parameter 18.32 and location -4.6
(8).
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Ligand dynamics.

To model the interaction of the bacteria with the ligand, we take a square domain
Ω = [x0,xmax]× [y0,ymax] with zero-flux or periodic boundary conditions. For nu-
merical treatment, the domain is discretized, and the ligand concentration Li, j is
given at the grid points only. Ligand diffuses with diffusion coefficient DL, and is
degraded with rate rL. Ligand may also be produced locally in space, specified by
a function Lprod(x,y). Production of ligand by the bacteria is given by the function
Lbact(p), where p denotes a set of parameters, for instance related to the internal
enzyme concentration. Uptake of the ligand by the bacteria is given by the rate rbact :

rbact = ku · L
L+K

, (4)

with the constants ku and K. The dependence (4) ensures that uptake of ligand is
proportional to the ligand concentration, but no larger than a maximum value ku.

Hybrid model for the interaction of the bacteria with the ligand.

Since the run length and turning angles of the bacteria are random, their move-
ment is not restricted to the numerical grid on which the ligand concentration is
defined. In our model, the bacteria interact with the four nearest grid points. If the
distance between two grid points is chosen to be one unit, the four surrounding grid
points of a bacterium located at (x,y) are given by {(int(x),int(y)), (int(x),int(y)+1),
(int(x)+1,int(y)), (int(x)+1,int(y)+1)}.

Interaction weights.

The strength of the interaction between the bacterium and a grid point depends on
the distance. The smaller the distance the larger the interaction. With dx and dy as
shown in Figure 1, we measure the distance to a grid point by the maximum norm,
which is natural in grid-environments. The unnormed interaction weights between
the bacterium and the four grid points are given as w̃i, j = 1−||di, j||∞, which turns
out to be

w̃i, j = min(1−dx,1−dy) w̃i+1, j = min(dx,1−dy)
w̃i, j+1 = min(1−dx,dy) w̃i+1, j+1 = min(dx,dy). (5)

The sum of the unnormed interaction weights still depends on dx and dy. The final
interaction weights will be normed and given by wi, j = w̃i, j/∑ w̃. With this definition
the four weights add up to 1 for any pair dx and dy.
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Fig. 1 Distance of the bac-
terium to the surrounding grid
points

(i,j)

(i,j+1)
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o
(x,y)
bacterial position

dx 1-dx
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3 Results

We tested the described setting by modeling the chemotactic motion of a small
number of in silico bacteria to self-produced ligand. We chose a small quadratic
domain of length X = 125 µm. The diffusion coefficient of the ligand was set to
DL = 0.015 µm2/s, and its degradation rate to rL = 0.001 µM/s. Bacteria pro-
duced ligand locally with rate Lbact(p) = const = 1 µM/s. These parameters devi-
ate from the physiological parameters, but are chosen such that a small number of
bacteria are able to produce detectable gradients. Physiological parameters would
be DL ≈ 1 · 10−4 mm2/s and a smaller production rate, which, however, would re-
quire a much larger number of cells and a significantly larger domain to generate
concentration profiles that allow for pattern formation processes.

Computational cost.

The computational cost of the simulations arises on one hand from the numeric solu-
tion of equations (1a-3) for every bacterium. On the other hand, also the operations
on the ligand (especially diffusion) adds to the cost. For a scaling of the computation
time with the domain size X , number of bacteria N and the simulated time interval T
see Figure 2. Simulations of 1000 bacteria for 20 minutes (natural generation time)
and a milimeter-scale domain size would still be feasible with the present setting.

Formation of transient patterns.

With the given parameters the bacteria produce detectable gradients. The simulated
bacteria often turn and retrace their own path. They also produce local ligand ac-
cumulations by moving in a very confined area for a certain time. In most of the
simulations, the bacteria accumulate in a small area and thus produce a local maxi-
mum in the ligand concentration to which they respond chemotactically, as shown in
Figure 3. These accumulations are, however, transient. The transient nature proba-
bly arises from a combination of adaptation to the absolute ligand concentration and
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Fig. 2 Computational cost for simulations of the motion of N bacteria during a time interval of
length T (in [min]) in a domain of size X = 250 µm (left) and for an increasing domain size for 1
and 10 bacteria respectively and a simulated time of T = 2min (right).

stochastic effects caused by the small number of bacteria. Whether the accumulation
pattern can be stabilized (for larger domain and population sizes, and different pa-
rameters of ligand diffusion, production and degradation) will be the topic of further
studies.

Fig. 3 Snapshots of bacterial motion. Snapshots of 10 moving bacteria, producing chemoattrac-
tant. The sequence on the left shows the emergence of a local accumulation in the top left corner.
The figure on the right another aggregation involving 9 out of 10 bacteria.
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4 Discussion and outlook

The presented model framework allows simulation of E. coli motion and chemo-
taxis for large populations under consideration of detailed aspects of the chemotaxis
signaling pathway. The framework can therefore be seen as a tool to connect models
of the signaling pathway and agent-based approaches of (like the models of Emonet
et al. (8) and Zonia and Bray (18)) to models considering pattern formation pro-
cesses on the population density scale (i.e. models described by Hillen and Painter
(9), Polezhaev et al. (15) or Tyson et al. (16)). While the influence of signaling
pathway processes on motion behavior has been well studied for single individuals,
there are only very few studies on pattern formation on the population that include
signal processes (7; 14). Most approaches include signal processing only in a very
phenomenological way. In fact, E. coli is the only organism where the enzymatic re-
actions comprising the chemotaxis signaling pathway are understood to this detail.

The presented framework allows the study of pattern formation processes of mu-
tants, or of individuals affected by noise in the signaling pathway. Also competition
of different populations for a common nutrient source can be simulated when in-
cluding ligand uptake. Already in first test simulations, transient aggregations can
be produced, which are have been observed experimentally and in simulations for E.
coli bacteria swimming in liquid medium (see for instance (5) or (16)). Extensions
and modifications of the model might also enable the reproduction of more common
patterns in semi-solid medium.
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Multiscale Analysis and Modelling for Cancer
Growth and Development

Dumitru Trucu and Mark A. J. Chaplain

Abstract In this chapter we present a novel framework that enables a rigorous anal-
ysis of processes occurring on three (or more) independent scales (e.g. intracellular,
cellular, tissue). We give details of the establishment of this new multiscale concept
and discuss a number of important fundamental properties that follow. This frame-
work also offers a new platform for the analysis of a new type of multiscale model
for cancer invasion that we propose. This new model focuses on the macroscopic
dynamics of the distributions of cancer cells and of the surrounding extracellular
matrix and its connection with the microscale dynamics of the matrix degrading
enzymes, produced at the level of the individual cancer cells.

1 Introduction

Cancer growth is a complex process that develops over several spatial and tempo-
ral scales, ranging from genes to molecular, cellular, and tissue levels. The spatial
multiscale character plays a crucial part in the overall tumour development and is
present from the very early stages when avascular solid tumours are formed. Char-
acterised by a diffusion-limited growth, these avascular solid tumours have a final
size of about 2mm in diameter (109 cells) consisting of an inner necrotic core, a
middle quiescent region, and an outer proliferating rim. During the invasive phase
of their growth, tumour cells produce matrix degrading enzymes (MDEs), such as
the matrix metalloproteinases (MMPs) (9), which are secreted into the extracellular
matrix (ECM) via a dynamic process of growth of receptors bound to the cancer
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cell membrane. As a consequence, this ability of cancer cells to break out of tissue
compartments and spread locally, gives solid tumours a defining deadly characteris-
tic and is a crucial step in the process of metastasis (25). However, it is important to
observe the genuinely spatial multiscale perspective of the overall cancer invasion.
In the micro-scale stage of the invasion process, the ECM degradation is caused by
the evolving spatial distributions of secreted MDEs and occurs at a molecular/cell
level. Once the matrix is degraded, the cancer invades the tissue at a macroscopic
level.

Understanding the many processes involved in cancer cell invasion of tissue is
therefore of great importance for gaining a deeper insight into cancer growth and de-
velopment, and the design of future anti-cancer strategies. Over the last two decades,
there has been a great effort in characterising the cancer invasion process via math-
ematical modelling, see for example (4; 5; 7; 11; 12; 13; 17; 20; 24). Along these
concerted modelling and analytical approaches, the multiscale character of cancer
invasion has already been recognised as being an essential part in the overall inva-
sion process and debated in various regards, see (6; 8; 14; 20; 18; 19).

Developments have also been taking place within the multiscale area, both from
an analytical and a numerical stand point, see (1; 2; 10; 15; 21; 22; 23). These pave
the way for a deeper understanding and more rigorous formulation of the processes
occurring on three (or more) distinct scales: namely the intracellular scale (inside the
cell), the intercellular scale (between cells), and the tissue scale. Generally speaking,
one may refer to these scales as the microscale, the mesoscale and the macroscale.
Therefore, we will naturally have two scaling factors λ > 0 and σ > 0 that realise
the transition between the macro- and meso-scale and meso- and micro-scale, re-
spectively. As explored in great analytical detail in (22), the multiscale character
of cancer invasion as well as various other multiscale questions arising in mate-
rial science or soft-matter physics has generated interest in the establishment of a
multiscale framework that is able to deal with more than three scales, when the scal-
ing factors λ and σ are not functions of the same reference parameter, say ε > 0.
From a mathematical stand point, it is usual that this kind of activity on three-scales
can be described asymptotically by a family of partial differential or integral opera-
tors Lλ ,σ , whose coefficients are dependent on the microscale σ and mesoscale λ ,
which, for a given domain Ω , under the presence of appropriate initial and bound-
ary conditions, captures the underlying complex process in terms of a corresponding
family of solutions uλ ,σ that is obtained for the induced systems of equations:

Lλ ,σ = f . (1)

Thus, the solutions uλ ,σ of (1) inherently depend on the micro-, meso- and macro-
scales. Depending on the particularities of each process and the heterogeneous
medium under investigation, one may consider whether to adopt a macroscale ap-
proximation of the process via a homogenization approaches (if this is possible and
appropriate) or to perform another type of asymptotic analysis. In the next section
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we will describe the new notion of three-scale convergence that offers a platform for
introducing a new multiscale topology in which such three-scale processes could be
assessed.

2 The concept of three-scale convergence

While a certain notion of multiscale convergence has previously been introduced by
Allaire and Briane in Ref. (3), obtained in essence by iterating the two-scale conver-
gence defined by (16), we will focus our attention on defining and exploring a new
concept of three-scale convergence where the scaling factors λ and σ are indepen-
dent in the sense that they are not functions of a common reference parameter ε .
In order to introduce this multiscale concept, let us first proceed with a few nota-
tions. Let us consider Ω a bounded region inRN and let Y := [0,1]N be the unit cube.
Let us denote by C

∞
# (Y ) the set of infinitely differentiable functions on RN obtained

as a Y−periodical extension of C
∞
(Y ). Further, H1

# (Y ) will denote the completion of
C

∞
# (Y ) for the norm of H1(Y ). Also, let us consider the space D(Ω ;C

∞
# (Y ;C

∞
# (Y )))

that consists of all test functions ψ(x,y,z) having the properties that, for any fixed
x, the function ψ(x, ·, ·) belongs to C

∞
# (Y ;C

∞
# (Y )). Finally, if we fix an arbitrary y,

the function ψ(x,y, ·) belongs to C
∞
# (Y ).

For any two sets of indices Σ ,Λ ⊂ R that accumulate to zero, under the previous
notations, the properties of the three-scale convergence concept, introduced and ex-
plained in full details in (22), are reviewed here in brief as follows:

Definition 0.1. A sequence of functions {uλ ,σ}λ∈Λ ,σ∈Σ ⊂ L
2
(Ω) is said to be three-

scale convergent to a function u0 ∈L
2
(Ω×Y×Y ) if, for any ψ ∈D(Ω ;C

∞
# (Y ;C

∞
# (Y ))),

denoting

lim
Λ ,Σ

∫

Ω

uλ ,σ (x)ψ(x,
x
λ

,
x

λσ
)dx := lim

Λ


lim

Σ

∫

Ω

uλ ,σ (x)ψ(x,
x
λ

,
x

λσ
)dx


 , (2)

the following relation holds true:

lim
Λ ,Σ

∫

Ω

uλ ,σ (x)ψ(x,
x
λ

,
x

λσ
)dx =

∫∫∫

Ω×Y×Y

u0(x,y,z)ψ(x,y,z)dxdydz. (3)

The well-posedness of the new concept of three-scale convergence is justified as
follows.

Theorem 0.1. From any arbitrary ‖ · ‖
L2 (Ω)-bounded sequence {uλ ,σ}λ∈Λ ,σ∈Σ ⊂

L
2
(Ω) we can extract a subsequence that is three-scale convergent to a limit

u0 ∈ L
2
(Ω ×Y ×Y ).
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Further, the boundedness properties of a three scale convergence sequence is ex-
plored by the following result.

Theorem 0.2. Let {uλ ,σ}λ∈Λ ,σ∈Σ ⊂ L
2
(Ω) be a three-scale convergent sequence to

a function u0 ∈ L
2
(Ω ×Y ×Y ). Then there exists a constant M > 0 as well as two

particular indices λ0 ∈Λ and σ0 ∈ Σ such that, for (λ ,σ)∈Λ×Σ with λ ≤ λ0 and
σ ≤ σ0, we have

‖ uλ ,σ ‖L2 (Ω)≤M. (4)

The following theorem gives a compactness characterisation for a product of se-
quences that are three-scale convergent. This is similar to the notion of “strong con-
vergence” encountered in two-scale convergence, see Ref. (2).

Theorem 0.3. Let {uλ ,σ}λ∈Λ ,σ∈Σ ⊂ L
2
(Ω) be a sequence that is three-scale conver-

gent to a function u0 ∈ L
2
(Ω ×Y ×Y ), which satisfies the following property:

lim
Λ ,Σ

‖ uλ ,σ ‖L2 (Ω)=‖ u0 ‖L2 (Ω×Y×Y ) . (5)

Then, for any sequence {vλ ,σ}λ∈Λ ,σ∈Σ that three-scale converges to v0 ∈ L
2
(Ω ×

Y ×Y ), we have

uλ ,σ vλ ,σ ⇀

∫∫

Y×Y

u0(x,y,z)v0(x,y,z)dydz in D ′(Ω). (6)

Finally, the convergence of the gradients is obtained via the following theorem.

Theorem 0.4. Let {uλ ,σ}λ∈Λ ,σ∈Σ ⊂ H1(Ω) be a bounded sequence with respect to
‖ · ‖

H1(Ω)
. Then, there exist three functions

u0 ∈ H1(Ω),
u1 ∈ L

2
(Ω ,H1

# (Y )),
u2 ∈ L

2
(Ω ×Y,H1

# (Y )),
(7)

and a subsequence {uλ ,σ}λ∈Λ̃ ,σ∈Σ̃
⊂ {uλ ,σ}λ∈Λ ,σ∈Σ such that we have:

1. {uλ ,σ}λ∈Λ̃ ,σ∈Σ̃
is three-scale convergent to u0;

2. {∇uλ ,σ}λ∈Λ̃ ,σ∈Σ̃
is three-scale convergent to ∇u0 +∇yu1 +∇zu2.

(8)

3 A three-scale process arising in a multiscale moving boundary
model for cancer invasion

In the cancer invasion context, let us assume a simplified picture in which we are
concerned only with the dynamics of the ECM and cancer cells that are located
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within a maximal reference spatial cube Y ⊂ RN(N = 2,3), which is centred at the
origin 0. Given ε , where 0 < ε < 1, we will consider an ε−resolution of Y , i.e a
uniform decomposition of Y using spatially translated εY cubes. Let t0 be an ar-
bitrarily chosen time. In the cancer affected region Ω(t0), the macro-dynamics of
cΩ(t0 )(x, t) and vΩ(t0 )(x, t) occurring over the time interval [t0 , t0 + ∆ t] are governed
by the following coupled macro-process. Firstly, the equation governing the cancer
cell population consists of a diffusion term as well as a term modelling the directed
haptotactic movement to the ECM, along with a term describing cancer cell prolif-
eration, i.e.

∂cΩ(t0 )

∂ t
= D∆cΩ(t0 ) −η∇ · (cΩ(t0 )∇vΩ(t0 ))+g(cΩ(t0 ) ,vΩ(t0 )). (9)

The equation governing the ECM concentration consists of a degradation term in
the presence of the cancer cells along with a general remodelling term, i.e.

dvΩ(t0 )

dt
=−α(t)cΩ(t0 )vΩ(t0 ) +ζ (cΩ(t0 ) ,vΩ(t0 )), (10)

where α(t) is a homogeneous time-dependent degradation factor.
The macro-process described by (9)-(10) have the following initial conditions:

cΩ(t0 )(x, t0) =: c0
Ω(t0 )

(x), x ∈Ω(t0),

vΩ(t0 )(x, t0) =: v0
Ω(t0 )

(x), x ∈Ω(t0),
(11)

as well as certain moving boundary conditions that are imposed by the microscopic
dynamics arising within a ε−bundle Pε of ε−size cubes εY that cover ∂Ω(t0),
namely ∂Ω(t0)⊂

⋃
εY∈Pε

εY .

In brief, these ε−cubes are chosen so that, on one hand, one face is captured inside
Ω(t0), which we denote by Γ int

εY
. On the other hand, the faces that are perpendicular

on Γ int
εY

are all intersecting ∂Ω(t0) while the face that is parallel to Γ int
εY

is remaining
completely outside of the only connected component of εY ∩Ω(t0) that is containing
Γ int

εY
. On each of these micro-domains εY , an MDE micro-dynamics takes place.

Since the MDEs are secreted locally by the cancer cells from within Ω(t0), for any
τ ∈ [0,∆ t], the local mean-value of the cancer cells spatial distribution cΩ(t0 )(·, t0 +
τ) can be considered to describe the source for the degrading enzymes within εY ∩
Ω(t0). Therefore, on each micro-domain εY ∈Pε , we obtain a space-wise compact
support source fεY : εY × [0,∆ t]→ R+ such that, for any τ ∈ [0,∆ t], fεY (·,τ) has
the following properties:

1. fεY (y,τ)= 1
λ (B(y,2ε)∩Ω(t0 ))

∫
B(y,2ε)∩Ω(t0 )

cΩ(t0 )(x, t0 + τ)dx, y ∈ εY ∩Ω(t0),

2. fεY (y,τ)=0, y ∈ εY \ (
Ω(t0)+{z ∈ Y | ‖ z ‖2< γ}),

(12)
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where λ (·) is the standard Lebesgue measure onRN , B(y,2ε) := {x∈Y | ‖ y−x ‖∞≤
2ε}, and γ is a constant parameter chosen such that γ << ε

3 . Hence, denoting by
m(y, t) the MDE distribution on εY , during the time period [0,∆ t], on any εY ∈Pε ,
the rate of change of the matrix degrading enzyme molecular distribution per unit
time is modelled as the effect of a diffusion process under the presence of the source
term fεY (y,τ), i.e.

∂m
∂τ

= ∆m+ fεY (y,τ), y ∈ εY, τ ∈ [0,∆ t], (13)

with zero initial conditions and zero Neumann boundary conditions.
Denoting by x∗εY

the first point of the intersection between the median of Γ int
εY

and
∂Ω(t0), of great interest is the possible displacement of x∗εY

to a new spatial location
x̃∗εY

as a result of the micro-process that is taking place on εY . This displacement oc-
curs when a certain transitional probability q(x∗εY

) := 1∫
εY

m(y,∆ t)dy

∫
εY\Ω(t0 )

m(y,∆ t)dy

exceeds a certain spatially associated threshold ωεY ∈ (0,1) that is induced by the
local characteristics of the tissue confined within εY .
If the threshold ωεY is exceeded, a third spatial scale is used to described the pat-
tern in the MDEs distribution m(y,∆ t) that ultimately determines the displacement
direction as well as its magnitude. This third scale is obtained via the regularity
property of the Lebesgue measure, and it is given by the maximal resolution size of
the uniform dyadic decomposition {D j} j∈J that can be accepted for εY such that
the non-overlapping region εY \Ω(t0) is approximated with accuracy δ << ε by
the union of the sub-family of dyadic cubes

{Di}i∈Iδ
:= {D ∈ {D j} j∈J |D ⊂ εY \Ω(t0)}. (14)

If we denote this scale by σ , it is immediate to remark that for two different micro-
domains εY s the associated σ−scales will be different, and as a consequence in this
three-scale process, the ε−scale and σ−scale remain independent.
This σ−scale is used to define the direction of potential movement and the mag-
nitude of potential displacement, but for conciseness purposes, in this presentation
we do not enter in the details of how these displacement characteristics are derived,
and, for full explanations, we refer the reader to (23).
Therefore, a new boundary ∂Ω(t0 + ∆ t) will be obtained as a smooth interpola-
tion of the set consisting of the new spatial positions obtained for those x∗εY

that
were moved and of the existing spatial positions of the rest of the x∗εY

that were
not moved. Further, the macroscopic dynamics on the new domain Ω(t0 + ∆ t) will
continue to be defined by the same governing equations (9)-(11), but having the new
initial conditions determined by the solution at the final time of the previous invasion
macro-step that is smoothly extended on the difference regionΩ(t0 +∆ t)\Ω(t0) via
a convolution process with a fast-decaying compact support kernel. For full details
of this new multiscale moving boundary model as well as the new multiscale numer-
ical scheme it gave rise to and computational invasion results that were obtained, we
refer the reader to (23).
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Fig. 1 Plots showing the computed distributions of cancer cells and ECM, and the contours of the
invasive boundary of the invading tumour after both 15 and the 30 macro-micro invasion stages.

In order to explore this multiscale model computationally, we developed a novel
multiscale numerical technique. Briefly, this numerical approach combines a finite
difference approximation of the macro-dynamics with a finite element scheme used
for the boundary micro-dynamics. The computational simulation results in Figure 1
show the spatio-temporal evolution of cancer cells and ECM alongside the invasive
tumour boundary and reveals a pronounced lobular and fingered-type progression
typical of cancer invasion patterns.

4 Concluding remarks

While the process of cancer growth and development presents us with a vast range
of multiscale sub-processes, with various independent scales, the new concept of



70 Dumitru Trucu and Mark A. J. Chaplain

three-scale convergence is paving the way for the establishment of an analytical
framework that will be appropriate for rigorous investigation. A concrete example
of such a three-scale process arises within cancer invasion, where a certain built-
in stochasticity that appears at the lower scales determines the cancer cell invasion
pathways in the surrounding ECM. The proposed multiscale modelling approach is
able to reveal a pronounced heterogeneous progression of cancer invasion (lobular
and fingered protrusions into the ECM). The computational simulation of this model
has led to the development of a novel type of multiscale “front-checking” numerical
scheme, whose robustness and consistency properties will be investigated within the
three-scale framework.
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A Non-linear Flux-limited Model
for the Transport of Morphogens

J. Calvo, J. Soler and M. Verbeni.

Abstract Morphogenic proteins play a key role in developmental biology. We in-
troduce flux-limited diffusion as a new tool to obtain mathematical descriptions of
biological systems whose fate is controlled by this class of proteins.

1 Introduction

Morphogenic proteins are main protagonists in crucial aspects of developmental
biology. Their importance comes from the fact that they mediate intercellular com-
munication acting as signaling molecules. They are also related to tumorigenesis
(28). These proteins are usually issuing from localized sources in the extracellular
medium, originating a concentration gradient. Target cells will respond to the in-
structive signals according to both their concentration and duration (14; 28). The
outcome is a change in gene transcription, which plays a pivotal role in generating
cellular diversity and patterning. Cells need time to process the protein signals and
to give a genetic response. Modelling these phenomena constitutes then a complex
problem in which different spatial and temporal scales are involved. Besides, the bi-
ological mechanisms of transport, reception and gradient formation of morphogenic
signals are recently argued to be realized through cell extensions (nanotubes, filopo-
dia or cytonemes) (4; 18; 27). This opens a new perspective on the subject that re-
vises the basis of the previous models of morphogenesis based on Brownian motion
and then on linear diffusion principles.

In this work we focus on the mechanisms that regulate the whole chemical cas-
cade in which morphogenic proteins are involved, with special emphasis on the
associated space transport mechanisms. Here we will concentrate on the mathe-
matical description of the Sonic Hedgehog (Shh hereafter) morphogenic function,
whose task is to promote the expression of the Gli genetic code. The Shh/Gli code
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is involved in the development of the embryo, a biological system that has been
thoroughly studied (14; 15; 20; 28; 29; 32).

The model case which has been most dealt with in the literature is that of a
chick or mice embryo, in which measurements can be afforded (5; 14; 15; 20; 28).
More precisely, this morphogenic protein induces the dorsoventral patterning of the
spinal cord in the neural tube, which is the precursor of the central nervous system.
It must be pointed out that there is a privileged way of propagation in the neural
tube, see (14; 15; 20; 28; 29; 32) (the so called dorsoventral axis, DV hereafter) and
in such a way a convenient simplifying assumption is to regard the system as being
one-dimensional along the DV axis. Another point which is worth mentioning is
that there is an almost similar biological system, the so-called wing imaginal disc in
Drosophila. Here the Hh morphogenic protein plays an analogous role to that of Shh
in vertebrates and the Gli target gene for Shh has its counterpart in the Ci –cubitus
interruptus– gene for Hh in drosophila (5; 8). Being easier to perform measurements
in this setting, this provides a powerful and handy workbench in order to try to
describe in a more complete way the development of the neural tube.

2 Mathematical Models

2.1. Linear Diffusion Models. Morphogen propagation has been studied from the
mathematical point of view since long ago, starting with the work of Alan Turing
(31), which has been successively improved by a series of authors in different con-
texts, see the recent review (22).

The most accepted models up to date assume that the spreading of the morphogen
is described with linear diffusion mechanisms, based on microscopic Brownian mo-
tion. Then, the standard models use reaction-diffusion equations. On one hand, lin-
ear diffusion equations are used to describe morphogen propagation and the for-
mation of concentration gradients (Shh in our case). On the other hand, the law of
mass action is used to describe the rates of change of the protein concentrations in-
volved in the transduction of the Shh–signal (GliA among others for the case we are
interested in) and gene activations.

As the culmination of several decades of work we find the mathematical model by
Saha and Schaffer (29). Its main purpose is to understand how morphogen gradients
are formed and interpreted from a dynamical point of view. This model studies DV
patterning in the chick embryo spinal cord, beginning when Shh is first secreted by
the floor plate (see for example (15)). It focuses not on the whole neural tube, but
only on the ventral-most binary cell fate (V3 interneurons). The model consists of a
reaction-diffusion equation for the spreading of the Shh morphogen

∂ [Shh]
∂ t

= DShh∆[Shh]+koff[PtcShhmem]−kon[Shh][Ptcmem] (1)

(square brackets denote concentations) plus a set of ordinary differential equations
for the concentrations of the most relevant proteins involved in the transduction pro-



A Non-linear Flux-limited Model for the Transport of Morphogens 75

cess: PtcShhmem, PtcShhcyt, Ptcmem, Ptccyt, Gli1Act, Gli3Act and Gli3Rep. All the
equations are posed on a finite spatial interval and (1) is complemented with Neu-
mann boundary conditions at the left end and zero Dirichlet boundary conditions at
the right end.

The main drawback that we find in this model is the unphysical spreading of the
morphogen to all the neural tube soon after secretion, entailed by the presence of
the Laplacian operator (32). One of the mechanisms considered to deal with this
situation is to take into account an (static) artificial activation threshold (for the
Shh concentration), below which no chemical reactions take place, see Figure 2-
C and (29). That amounts to cut off a posteriori the numerical profiles obtained as
solutions to (1), thus introducing artificial fronts (Figure 2-C). This is a very delicate
issue, as several recent experimental findings point out. Namely, the concentration
of Shh received by the cells and the time of exposure are factors of similar relevance
(14; 15). To sum up, without a threshold mechanism the chemical signal arrives
too fast to distant areas, thus triggering the chemical cascade too soon. But with a
threshold mechanism the chemical signal will never be able to activate distant cells
(contrary to the long-range signaling effect that has been observed (29)), having as
a result that large sections of the neural tube will never be exposed to the action
of the morphogen. Apart form this, it has been also shown that Shh does not travel
through the medium as it stands, but as a part of bigger aggregates or vesicles (8;
33; 34). As the size of these aggregates is comparable to that of the medium through
which they are moving, being also this medium quite inhomogeneous, the usual
scale assumptions for a description in terms of Brownian motion are not fulfilled
at all. Then we commit ourselves to give an alternative transport mechanism to the
linear diffusion that is able to reproduce the recent experimental results, see Figure
2-B and (32).

We identify as the source of most of the problems the recourse to linear diffusion
mechanisms, which is not realistic in this context. The basic issues would be then to
remove the infinite speed of propagation, to allow for front propagation instead and
also to account properly for the temporal and spatial scales involved in the process.
Our proposal is to substitute the linear diffusion mechanisms and to use flux limita-
tion instead. Then we have to deal with a non-linear flux-limited reaction-diffusion
system (32), as we explain below. The first aim consist in obtaining a graded tempo-
ral distribution of the signal and, as a consequence, to recover the time necessary to
activate or inhibit the different genes involved in the signal transduction. This is not
allowed when the velocity of propagation is infinite, as the natural inhibitor-activator
process requires some time to develop (24).

2.2. A Non-linear Flux-limited Model The problem of infinite speed of propaga-
tion for linear diffusion equations dates back to Fourier’s theory on heat conduc-
tion (17), which he based on a linear relation between the heat flux and the gra-
dient ∇u(t,x) of the temperature function. The subsequent macroscopic equation,
∂tu = k∆xu, predicts an infinite speed of propagation for the heat. Flux-limitation
mechanisms propose to modify Fourier’s law to obtain a saturating heat flow when
temperature gradients become unbounded. A variety of macroscopic equations
(2; 23; 25) are then produced, among which the following is a remarkable exam-
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ple:

∂u
∂ t

= νdiv


 |u|m∇xu√

u2 + ν2

c2 |∇xu|2


+F(u) . (2)

In the case m = 1, this equation with F(u) = 0 was first introduced by Rosenau in
(26) and later derived by means of optimal mass transportation in (7). It can also be
recovered performing macroscopic limits of kinetic models (6). Here the constant
c is the maximum speed of propagation allowed in the medium (analogous to the
sound speed in hyperbolic settings; in fact the behavior of this equation is more hy-
perbolic than parabolic), a fact which is analytically justified in (3). Furthermore ν
stands for a kinematic viscosity and reduces to a diffusion coefficient in the limit
c→ ∞, in which the usual heat equation is recovered (11). The mathematical prop-
erties of this equation and related models have been analyzed in a series of papers
(see (12) and references therein). For the case m > 1 (a porous-media flux-limited
equation) we refer to (2; 13).

We wonder next if we can tackle the qualitative behavior that we have in mind
using this family of non-linear mechanisms. To test such an issue, these tools
were incorporated into a widely known model, the one-dimensional FKPP reaction-
diffusion model describing traveling waves (16; 21), which consists of equation (2)
with F(u) = k0u(1− u), where k0 is a constant related to the intrinsic growth rate
of the biological particles.

It is found that, while classical traveling waves still do exist at high speeds, these
degenerate to singular traveling fronts as the wave speed lowers to the value of the
constant c (10). These singular traveling waves consist in a discontinuous entropy
solution with infinite tangent on the discontinuity front, see Figure 1. Therefore, we
learn that with these flux-limitation mechanisms we have a finite constant speed for
the propagation of the biological information (whatever it may be) and the activa-
tion of related responses. Coming back to the description of morphogen propaga-

t

v

t

v

Fig. 1 Different traveling waves: classical shape (left) and singular front (right).

tion in the neural tube, the previous background encourages us to change the linear
reaction-diffusion equation (1) describing transport of morphogens in the neural
tube, introducing a flux limitation mechanism instead of the Laplace operator (32).
The following flux-limited spreading (FLS) equation results:
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∂ [Shh]
∂ t

= ν ∂x


 [Shh]∂x[Shh]√

[Shh]2 + ν2

c2 (∂x[Shh])2


+ ko f f [Ptc1Shhmem]−kon[Shh][Ptc1mem].

Following this line of reasoning, the chemical reactions taking place inside the cells
will be described by a different set of ordinary differential equations than those of
(29), not only because the chemical signal does not arrive instantaneously to the
surface receptors and this alters the internal dynamics in a significant way, but also
because the synthesis and transport to cell membrane of Ptc1cyt molecules can take
some time. This feature seems to have been overlooked in the previous models and
it entails a delay for the system of differential equations (which is represented by
the parameter τ below). The set of differential equations describing biochemical
reactions inside the cells reads now as follows:

∂ [Ptc1Shhmem]
∂ t

= −(koff +kCin)[Ptc1Shhmem]+kon[Shh][Ptc1mem]

+kCout [Ptc1Shhcyt] ,
∂ [Ptc1Shhcyt]

∂ t
= kCin[Ptc1Shhmem]−kCout[Ptc1Shhcyt]−kCdeg[Ptc1Shhcyt] ,

∂ [Ptc1mem]
∂ t

= koff[Ptc1Shhmem]−kon[Shh][Ptc1mem]+kPint[Ptc1cyt],

∂ [Ptc1cyt]
∂ t

= kPPtr
{
[Gli1Act](t− τ), [Gli3Act](t), [Gli3Rep](t)

}
ΦPtc

−kPint[Ptc1cyt],

∂ [Gli1Act]
∂ t

= kGPtr
{
[Gli1Act](t− τ), [Gli3Act](t), [Gli3Rep](t)

}
ΦPtc

−kdeg[Gli1Act],

∂ [Gli3Rep]
∂ t

= [Gli3Act]
kg3r

1+RPtc
−kdeg[Gli3Rep],

∂
∂ t

[Gli3Act] =
γg3

1+RPtc
− [Gli3Act]

kg3r

1+RPtc
−kdeg[Gli3Act] ,

being

ΦPtc =
[Ptc10]

[Ptc10]+ [Ptc1mem]
, RPtc =

[Ptc1Shhmem]
[Ptc1mem]

,

where [Ptc10] is the initial value of [Ptc1mem]. See (32) for the precise values of the
parameters. From now on, we will refer to the coupling of the FLS equation with
the ODEs system as the Gli-FLS model.

The mixed Dirichlet-Neumann problem (the well-possedness as well as the the
asymptotic behavior of the solutions with zero weak Dirichlet boundary conditions
at the right end (9)) for the FLS equation without reaction terms has been analyzed
in (1; 9). Interestingly enough, it is demonstrated that the incoming chemical signal
travels exactly at constant speed c, which is precisely the behavior that we wanted
to describe with a mathematical model, and which cannot be attained using a model
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like that in (29). The value of c can be measured experimentally in different sys-
tems (32). The analysis of the complete Gli-FLS model is by now work in progress.
We can nevertheless ascertain the behavior of our model by means of numerical
simulations (see Figure 2).

3 Comments and Discussion

We detail here the outstanding features of our proposed model. Using our equations
we find that the unphysical diffusion of the Shh morphogen is eliminated. This en-
tails the preservation of dynamical structures: the chemical signal is propagated as
a traveling front, and now there are different biological responses at different times,
instead of being activated instantaneously as it was the case with the linear diffusion
model (29). Our numerical simulations show a quite satisfactory agreement with
experimental results (14; 32). Cells can now be described as playing an active role
in morphogen propagation and gradient formation. Besides, some suitable modifica-
tions and improvements which our model calls for are: the inclusion of Wnt, the pos-
sibility of describing also the relation with p53 (30), and the description of the BMP
morphogenic family (19) (which is competing with the Shh in the development of
the neural tube). We also keep in mind possible applications to cancer therapy. The
first step would correspond to include the effect of the cyclopamine in our model.
Another work in progress we can mention is the applicability of the porous-media
flux-limited equation (2; 13) to this problem (see Figure 3). As a final remark, our
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Fig. 2 Evolution of Shh and Gli1Act versus distance from the floor plate at various times using
our nonlinear flux–limited diffusion model in the first two figures. The third one represents the
evolution of Shh when linear diffusion (29) is used, where threshold and artificial fronts have been
added. Note that in this case the fronts are moving backwards, while fronts moving forward appear
in a natural way in our Gli-FLS system (figure on the center).

different approach could represent an important departure from the dominant inter-
pretation of morphogenetic action modeling and understanding. While attractive for
its apparent simplicity, linear diffusion cannot be the cornerstone to explain mor-
phogenetic action. It may mimic biological patterns –which is not even the case for
the situation that interests us here–, but it cannot account for how these are realized.
Flux-limited diffusion may represent spatial constrains to morphogen movement
through interaction with binding patterns or spreading through restricted channels.
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Fig. 3 Evolution of two different initial data by equation (2) with F = 0. The first plot corresponds
to m = 4, with

√
1− x2χ|x|<1 as initial condition. For the second plot m = 2 and the initial con-

dition is given by exp(1/(x2−1))χ|x|<1. In both cases ν = 1 and c = 1. Area is preserved during
evolution; the supports of the solutions start to grow when a vertical contact angle is reached.
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Some thoughts on the ontogenesis in B-cell
immune networks

Elena Agliari, Adriano Barra, Silvio Franz, Thiago Pentado-Sabetta

Abstract In this paper we focus on the antigen-independent maturation of B-cells
and, via statistical mechanics tools, we study the emergence of self/non-self dis-
crimination by mature B lymphocytes. We consider only B lymphocytes: despite
this is an oversimplification, it may help to highlight the role of B-B interactions
otherwise shadowed by other mechanisms due to helper T-cell signalling. Within a
framework for B-cell interactions recently introduced, we impose that, during on-
togenesis, those lymphocytes, which strongly react with a previously stored set of
antigens assumed as “self”, are killed. Hence, via numerical simulations we find that
the resulting system of mature lymphocytes, i.e. those which have survived, shows
anergy with respect to self-antigens, even in its mature life, that it to say, the learning
process at ontogenesis develops a stable memory in the network. Moreover, when
self-antigen are not assumed as purely random objects, which is a too strong simpli-
fication, but rather they are extracted from a biased probability distribution, mature
lymphocytes displaying a higher weighted connectivity are also more affine with
the set of self-antigens, ultimately conferring strong numerical evidence to the first
postulate of autopoietic theories (e.g. Varela and Counthino approaches), according
to which the most connected nodes in the idiotypic network are those self-directed.
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1 Introduction

Immunology is probably one of the fields of science which is experiencing the great-
est amount of discoveries in these decades: As the number of experimental works
increases, the need for minimal models able to offer a general framework where to
properly locate experimental findings is a must for modelers interested in this field.

The purpose of the immune system is to detect and neutralize molecules, or cells
(generically called antigens) potentially dangerous for the body, without damaging
healthy cells (1). The humoral response performed by B lymphocytes consists in
analyzing the antigen, then the clone/s with the best matching antibody undergoes
clonal expansion and releases specific immunoglobulins, which, in turn, are able
to bind and neutralize pathogens. In order to achieve this goal, the immune system
needs an enormous number of different clones, each having a particular receptor for
antigens. As these receptors are generated at the genetic level randomly via somatic
mutation, the body may produce lymphocytes attacking not only dangerous invaders
(e.g. viruses), but also internal agents. The latter are referred to as self-reactive lym-
phocytes, which, if not carefully checked, may induce autoimmunity, an obviously
unwanted feature.

In order to avoid auto-immunity, at least two mechanisms are thought to work:
B-cells are generated, and maturate, in the bone marrow, where they are exposed to
the so-called “negative selection rule”1. More precisely, these lymphocytes are made
to interact with an available repertoire of self-antigens, namely molecules/cells be-
longing to the host body, and those who are found to respond to them (so potential
autoimmune B-cells) are induced to apoptosis, in such a way that only B-cells un-
able to attach to the available self survive2 and share the freedom of exploring the
body thereafter (1).

In fact, it is widely accepted that the bone marrow produces daily ∼ 107 B cells,
but only ∼ 106 are allowed to circulate in the body, the remaining 90% undergo
apoptosis since targeted as self-reactive (24): as shown for instance by Nemazee
and Burki (16), this depletion of the potential defense is due to the negative selection
(clonal deletion) of immature B-cells expressing self-reactive antibodies or too low
reactive ones.

As only a fraction of self-antigens are present into the bone marrow, self-reactive
lymphocytes not expressing specific receptors (BCR) against the available self are
allowed to circulate freely by this first security procedure. Hence, another mecha-
nism must act at peripherals levels (i.e. in the lymphonodes, spleen and liver). In-
deed, Goodnow was able to show experimentally (7) that these self-reactive lympho-

1 We only stress here that there exist strong differences between B-cell maturation in the bone
marrow and T-cell maturation in the thymus (6; 14; 15). Unlike TCR (T cell receptor), that evolved
to recognize characteristic patterns of pathogens, BCR (B cell receptor) is primarily diversified in
random fashion and has not evolved to recognize a particular structure. Therefore each B cell can
not discriminate self versus non self alone (11).
2 Strictly speaking, negative selection requires that newborn lymphocytes also display a non-null
binding strength with at least a self-antigen, probably to avoid antibodies completely cut off from
the host (10).
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cytes actually exist in the body but, instead of undergoing apoptosis, they experience
anergy in their responses, namely, under a proper stimulus, they do not respond. The
main strand for explaining anergy and the consequent ability for self/non-self dis-
crimination is via helper double signalling (11), nonetheless other mechanisms are
expected to cooperate. Among these, collective features due to interactions among
mature B cells may play a role and shall be investigated here trough statistical me-
chanics simulations.

The plan of the paper is as follows: in Sec. 2 we describe how the idiotypic net-
work is generated and its main features; in Sec. 3 we develop the first approach to
ontogenesis modeling, where we arbitrarily label as “self” a given amount of ran-
domly generated antigens and check the subsequent growth of the network made
of lymphocytes unable to attack these self-antigens. In Sec. 4 we develop an al-
ternative approach, where we remove the (biological unreasonable) hypothesis that
self-proteins are random objects and we deal with “correlated” self-antigens; im-
pressively we find that in the correlated case the final repertoire not only correctly
avoids to attach self, but also displays the peculiar topological structure suggested
by Varela and coworkers, namely that nodes with high weighted connectivity are all
self-directed. Finally, Sec. 5 contains discussions and comments on our results.

2 The minimal model

In this work we rely on the model introduced and developed in (2; 3), which achieves
a description of the B-cell network able to recover as “emergent properties” ba-
sic facts such as low-dose tolerance, bell-shape response, memory features and
self/non-self discrimination. However, within that framework the ability of the sys-
tem to discriminate between self and non-self was recovered only at a cooperative
level, in agreement with Varela and Coutinho (12; 20; 23): clones which poorly in-
teract with others are thought of as non-self-directed since they can easy respond to
external fields (roughly speaking are more approximable as single particles), while
clones which interact strongly and with a large number of other clones are thought
of as self-directed since they experience a deep quiescent signal from nearest neigh-
bors, which keeps them in a state of anergy. Here we want to move over and show
that such mechanism regulation stems from and works synergically with negative
selection.

Before proceeding, we briefly summarize the main features characterizing the
interactions between B lymphocytes, ultimately leading to an idiotypic network; for
more details we refer to (2; 3).

The system is made up of an ensemble of N different clones, each composed of
M identical lymphocytes; a given lymphocyte i, is then described by the dichotomic
variable σα

i =±1, with α = 1, ...,M, and i = 1, ...,N, such that the value−1 denotes
an anergic/absent state (low level of antibodies secretion) while the value +1 a firing
state (high level of antibodies secretion). The antibodies secreted by a lymphocyte
carry the very same idiotipicity expressed by the receptors of the secreting B cell. A
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generic antibody is represented by a binary string of length L, encoding the expres-
sion of L epitopes3. In order to check immune responses we need to introduce the
N order parameters mi as local magnetizations:

mi(t) =
1
M

M

∑
α=1

σα
i (t). (1)

From the magnetizations mi ∈ [−1,1], we can define the concentrations of the fir-
ing lymphocytes belonging to the ith family as ci(t) ≡ exp[τ(mi(t)+ 1)/2], where
τ = log M, (see e.g. (22; 25)). Further, we introduce the Hamiltonian H which en-
codes the interactions among lymphocytes as well as the interactions between lym-
phocytes and the external antigens:

H = H1 +H2 =−N−1
N,N

∑
i< j

Ji jmim j− c
N

∑
i

hk
i mi, (2)

where Ji j represents the coupling between clones i and j, while hk
i represent the

coupling between the clone i and a given antigen k (still represented by means of a
binary string of length L) presented to the system and whose concentration is tuned
by c.

The interaction matrix J and, similarly, the couplings h, are built up as follows
(2; 3). Given two strings ξi and ξ j, representing the idiotipicity of two clones, their
µ-th entries are said to be complementary, iff ξ µ

i 6= ξ µ
j so that the overall number

of complementary entries ci j ∈ [0,L] can be written as ci j = ∑L
µ=1[ξ

µ
i (1− ξ µ

j ) +
ξ µ

j (1− ξ µ
i )]. Following biological arguments the affinity between two antibodies

is expected to depend on how much complementary their structures are, hence, we
introduce the functional

fα,L(ξi,ξ j)≡ [αci j− (L− ci j)], (3)

where α ∈ R+ quantifies the difference in the intensities of attractive and repulsive
contributes. Notice that fα,L(ξi,ξ j) ∈ [−L,αL] provides a measure of how “affine”
ξi and ξ j are. When the repulsive contribute prevails, the two antibodies do not
match each other and the coupling among the corresponding lymphocytes Ji j(α,L)
is set equal to zero, conversely, we take Ji j(α,L) = exp[ fα,L(ξi,ξ j)]/〈J̃〉α,L, being
〈J̃〉α ,L the proper normalizing factor so to keep unitary the average coupling.

As mentioned above, the generic antigen presented to the system can be mod-
eled as well by means of a binary string ξk and the rules determining the interaction
strength between the i-th clone and the antigen are the same as for interaction be-
tween two antibodies, hence leading to the coupling hk

i .
We finally recall that, from a statistical mechanics perspective, the Hamiltonian,

calculated for a given configuration of magnetizations {mi}i=1,...,N , represents the

3 The string length is assumed to be the same for any antibody following the fact that the molecular
weight for any immunoglobulin is accurately close to 15 ·104 (9)
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“energy” pertaining to that configuration and, according to thermodynamic prescrip-
tions, the system spontaneously tries to rearrange in order to minimize it. Since the
coupling matrix is symmetric, it is possible to construct a dynamics satisfying the
detailed balance and relaxing to Maxwell-Boltzmann distribution (22). In the fol-
lowing this is realized using a standard Glauber single spin-flip dynamics.

We also stress that, as simulations with a realistic amount of clones are pro-
hibitive in terms of CPU time, we worked at smaller repertoire sizes and tested the
robustness of results trough finite-size-scaling analysis (see Fig.1).

3 Random Ontogenesis

As we mentioned, during ontogenesis, those B-cells interacting strongly with self-
antigens undergo negative selection and are deleted. Here we mimic this process
by implementing the following learning rule: At the beginning, and once for all,
NS vectors are randomly drawn from a uniform distribution and stored as “self”.
Then, we extract sequentially and randomly (again from a uniform distribution)
new strings representing newborn lymphocytes and those which are able to bind
strongly to at least one self-antigen from the set NS are killed, otherwise they are
retained to build up the mature repertoire. The process is iterated until the size N for
the repertoire is reached.

The resulting system is therefore characterized by the parameters N,NS,L,α ,
where the interaction ratio α is kept fixed and equal to α = 0.7 following biological
evidences (2) and we also fix the scaling between N and L as L = γlog N, according
to bio-physical arguments (2); here we choose γ = 3. As for NS, we take it equal

Fig. 1 Left: Distribution of the activated clones for an immune network at rest built up by N = 628
clones versus the amount of self-antigens used to generate the repertoire with antibodies made
of by strings of L = 11 epitopes. Right: Finite size scaling of the system. Averaged response of
the network created trough a repertoire with L = 8, ...,14 epitopes (keeping the fractions of the
present clones and self-antigens constant) against one (randomly chosen) antigen of the repertoire
itself. Coherently with the request that only a finite fraction of clones remains active increasing the
network size, the fit is obtained trough O(N−1) power (the fit with Nx gives x∼−1.12).
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to a fraction of N. This allows to fulfill the relatively small survival probability for
newborn B cells (24) and still retains a set of self-antigens vanishing with respect to
the whole set of possible antigens, i.e. NS/2L < exp(−L(log 2− 1/γ)). Of course,
when NS = 0 the original model (2; 3) is recovered. Finally, the binding between a
newborn B and a self-antigen is considered to be strong if the number of comple-
mentarities between the related strings is larger than 3L/4.

Once the repertoire has been created, external antigens are presented to it and
responses are checked. First, we test its ability in self/non-self discrimination by
presenting to the system a field composed only by self-antigens and measuring the
resulting magnetization. Indeed, we find that anergy to self is completely fulfilled
(not shown in plots), for each experienced field made of by 1, ..,NS self-antigens.
Conversely, when antigens presented do not belong to self, the fraction of the ac-
tivated clones grows as the number of antigens presented increases, as reported in
Fig.2 (left), eventually falling into a chronic activation state. This behavior can be
easily understood from the perspective of spin glasses, due to the analogy between
the system under study and a diluted random field model in the presence of a mag-
netic field: at low temperature, it undergoes a first order phase transition for a critical
value of the external field (13; 5).

Furthermore, by enlarging the set of self-antigens NS (at fixed repertoire size N),
the matching between a generic self-antigen and the mature repertoire gets sharper
so that only a small amount of highly affine clones is able to respond (see Fig.1,
right).

Fig. 2 Left: Fraction of the activated clones as a function of the antigens presented to the sys-
tem: The system is made up of by 3352 clones and 50 self-antigens. Right: Averaged weighted
connectivity for different repertoires generated increasing the size of the experienced self NS at
ontogenesis. For the latter various degree of correlation a have been tested as explained by the
legend. Here we fixed N = 2Ns and γ = 3.
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4 Correlated Ontogenesis

Despite a certain degree of stochasticity seems to be present even in biological
systems (1), self-proteins are not completely random objects (26; 18). In order to
account for this feature we now generate the repertoire of self-antigens according
to a probability distribution able to induce a correlation between epitopes of self-
antigens. Seeking for simplicity we adopt the following

Psel f (ξ
µ
i = +1) = (1+a)/2, Psel f (ξ

µ
i = 0) = (1−a)/2,

where a is a parameter tuning the degree of correlation: when a = 0 we recover the
unbiased situation described in the previous section, while increasing (decreasing)
a→+1 (a→−1) we move towards stronger correlation.

Figure 3 shows that the correlation between the weighted degree of a node and its
affinity with self is numerically confirmed, and turns out to be larger for intermediate
values of a. As a result, the system is expected to respond more strongly to non-self
antigens, consistently with an healthy behavior (see Fig.3, right and Fig.4, left).

5 Discussion

In this paper we investigated the effects of negative selection occurring during the
ontogenesis of B-cells. First we showed the ability of the system to develop memory
of the self experienced at ontogenesis, in such a way that cells self-directed behave
anergetically even in the mature repertoire. We also get a numerical confirmation of
Varela’s suggestions (20; 23), according to which nodes with high (weighted) con-

Fig. 3 Left: The figure envisages the correlation between the weighted degree w of a node and
its (maximum) affinity fa with the strings stored as self. Notice that larger values of w correspond
to larger values of fa. Such correlation has been measured in terms of Spearman correlation co-
efficient rs which has been represented in the inset as a function of a and N. The black star ∗
corresponds to N = 5000 and a = 0.45, which are the parameters used for the main plot. Right:
Fraction of activated clones as a function of a and for different sizes of the repertoire, as explained
by the legend. The response of the system is measured in the case a self-antigen (dotted lines) and
a external, non-self antigen (continuous line) is presented.
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nectivity can be looked at as “self-directed”. Therefore, ontogenesis acts as a learn-
ing process that, from one side, teaches to each single lymphocyte not to attack the
proteins seen during maturation, and on the other side induces a correlation among
idiotipicity yielding a possible regulatory role for the mature B-cell network. In this
way, Varela’s assumption is moved from a postulate to a physical consequence of a
correlated learning process.

In this process a fundamental requisite is that self-proteins are not purely random
object, but they share a certain degree of correlation. Here we introduce this bias
in the simplest way just to show the idea; more biological patterns can possibly be
implemented.

Future development should include T-helper interactions as well as an explo-
ration of the relation between the amount of stored self-antigens in ontogenesis and
the stability of the mature response against the number of encountered pathogens.

This research belongs to the strategy of exploration funded by the MIUR trough the
FIRB project RBFR08EKEV which is acknowledged.
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Mathematical Modeling of Cancer Cells
Evolution Under Targeted Chemotherapies

Marcello Delitala and Tommaso Lorenzi

Abstract This chapter focuses on selection and resistance to drugs in an integro-
differential model describing the dynamics of a cancer cell population exposed to
targeted chemotherapies. Mutations, proliferation and competition for resources are
assumed to occur under the cytotoxic action of targeted therapeutic agents. The
obtained results support the idea that cancer progression selects for highly prolifer-
ative clones. Moreover, it is highlighted how targeted chemotherapies might act as
an additional selective pressure leading to the selection for the most fitting, and thus
eventually most resistant, cancer clones.

1 Introduction

Solid tumors can be seen as heterogeneous aggregates composed of cells carrying
different mutations, which compete for space and resources (e.g. oxygen and glu-
cose) and try to evade the predation exerted by the immune system and, eventually,
by therapeutic agents (10).

The fitness of neoplastic clones (i.e. their ability to survive and reproduce) is
shaped by different selective pressures, which can vary from one organ to another
(8). This implies that, depending on the environmental context, the same mutation
can be advantageous/deleterious/neutral (i.e. it can increase/decrease/not affect the
cellular fitness).

Tumor evolution usually privileges the selection of cells endowed by mutations
with high proliferative abilities. Even more, the exposure to chemotherapeutic drugs
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may reinforce the selection for the most fitting, and thus eventually most resistant,
cancer clones. As a result, as time goes by, a rapid evolution toward highly malignant
genotypic-phenotypic profiles can occur within tumor aggregates, which is likely to
be the main reason why targeted chemotherapeutic treatments may fail in curing
cancer.

An integro-differential model for the dynamics of cancer cells is here proposed,
which is aimed at highlighting those phenomena that play a key role in tumorigene-
sis, focusing on the aspects related to tumor progression, intra-tumor heterogeneity
and response to targeted cytotoxic therapies. Such model can be viewed as a sim-
plified version of the one developed in (2) and relies on the mathematical structures
proposed in (1; 11). In more detail, the contents of this chapter are organized as
follows:

Section 2 is devoted to outline the essential features of the biological phenomena
under consideration and to present the mathematical model.

Section 3 is meant to summarize the emerging phenomena highlighted by the
model. The results of numerical simulations are reported and related biological in-
terpretations are provided.

2 The Model

In this chapter, we focus on a sample of cancer cells characterized by heterogeneous
genotypic-phenotypic profiles (i.e. different expression levels of the genes involved
in cancer progression and the related observable traits), eventually exposed to Tar-
geted Chemotherapeutic Agents (TCAs, in the sequel).

Moving toward a mathematical formalization, we look at the sample as a popula-
tion structured by a continuous variable u ∈U := [0,1], standing for the genotypic-
phenotypic profile of the cells. Since we are interested, at this stage, in evolutionary
aspects, phenomena involving geometrical and mechanical variables are not under
consideration. The cell population is characterized by the function

f = f (t,u) : [0,T ]×U → R+,

where the time variable t is normalized with respect to the average life-cycle dura-
tion of cancer cells and parameter T models the end time of observations. At any
fixed time t, the quantity f (t,u)du stands for the number of cells whose genotypic-
phenotypic profile belongs to the volume element du centered at u, normalized with
respect to the total number of cells inside the system at time t = 0.

Macroscopic gross variables can be computed through integration. In particular,
the total density of the population at time t is defined as:

n(t) :=
∫

U
f (t,u)du. (1)
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Cancer cells are exposed to the action of TCAs, considered as an additional
population structured by a continuous variable v ∈ V := U , which is related to the
genotypic-phenotypic profile of the cells that can be mainly recognized and attacked
by the curing agents. This additional population is characterized by the function

g = g(t,v) : [0,T ]×V → R+;

considerations analogous to the ones drawn about function f hold for function g, as
well.

The biological phenomena of interest are modeled according to the assumptions
and the strategies below summarized. Mathematical details are close to the ones that
we have previously introduced in (2). In fact, compared to the model there devel-
oped, the one here presented can be seen, at least to a certain extent, as an essential
and simplified version, which is nevertheless able to catch some interesting emerg-
ing behaviors.

- Cell mutations and renewal.
Net of cell renewal, mutations lead parent cells to generate daughter cells charac-
terized by different genotypic-phenotypic profiles. Since mutations usually lead to
small variations, we make use of a small parameter ε , measuring the average size of
such changes, and a parameter α , modeling the average probability for genotypic-
phenotypic modifications, to define a mutation kernel M (u,u∗;ε) as follows:

M (u,u∗;ε) :=





αδ (u− (u∗± ε))+(1−2α)δ (u−u∗), if ε < u < 1− ε
αδ (u− (u∗− ε))+(1−α)δ (u−u∗), if 0≤ u≤ ε
αδ (u− (u∗+ ε))+(1−α)δ (u−u∗), if 1− ε ≤ u≤ 1,

where δ is the Dirac’s delta distribution. It is worth noting that kernel M has the
structure of a probability density.

- Cell proliferation.
In order to mimic the effects of cancer growth, we introduce a positive function
κ(u), which models the rate of cell proliferation net of apoptosis and it is assumed
to be sufficiently smooth as well as to have a a maximum value κC. Cells proliferate
at different rates depending on the shape of function κ and the clones expressing the
most proliferating genotypic-phenotypic profiles duplicate at rate κC. It should be
noted that we are modeling mutations separately from proliferation. In fact, these
phenomena usually occur on different time scales and distinct parameters are re-
quired to model the related frequencies.

- Competition for resources between cancer cells.
Cellular proliferation is hampered by the competition for resources. Therefore, we
assume that interactions can lead cancer cells to die at a rate defined by a positive
smooth function µ(u), whose maximum value is identified by parameter µC. Cells
die, due to lack of resources, at different rates depending on the shape of function µ .
The clones dying at rate µC are characterized by those genotypic-phenotypic pro-
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files endowing them with the weakest competitive abilities.

- Competition between cancer cells and targeted chemotherapeutic agents.
Targeted chemotherapies are able to selectively kill cancer cells characterized by
specific genotypic-phenotypic profiles. The average effectiveness of TCAs is mod-
eled by a parameter µT , while a parameter θ T is introduced as an average measure
of the cancer-therapy interaction selectivity.

To sum up, a 6 parameters model is defined, where all the parameters are positive
real numbers characterized by a well defined biological meaning:

∂
∂ t

f (t,u) =
∫

U
M (u,u∗;ε) f (t,u∗)du∗− f (t,u)

︸ ︷︷ ︸
mutations and renewal

+ κ(u) f (t,u)︸ ︷︷ ︸
cell proliferation

− µ(u) f (t,u)n(t)︸ ︷︷ ︸
cell-cell competition

−µT f (t,u)
∫

V
e−θ T (v∗−u)2

g(t,v∗)dv∗

︸ ︷︷ ︸
destruction due to TCAs

, (2)

which describes the net inlet of cells through the volume element du centered at u
at time t.

With reference to TCAs, a detailed balance equation is not introduced to describe
the dynamics of g(t,v), which is supposed to be a given smooth function of its
argument.

3 Computational Results and Critical Analysis

This section summarizes numerical results obtained by solving two distinct initial
value problems linked to Eq. (2). Focusing on emerging behaviors, computational
analysis are addressed to study how the dynamics of f (t,u) is affected by the values
of some critical parameters, which are selected case by case with explorative aims.
In particular, simulations are meant to:

- enlighten the role played by the biological phenomena under consideration
within dynamics of cancer cells, with particular reference to progression and
heterogeneity aspects;

- reproduce the emergence of resistance to anti-cancer therapies and highlight the
controversial role that targeted chemotherapies can play in cancer development.

With this aim, given the expressions of the parameter functions, we numerically
solve the mathematical problems defined by endowing Eq. (2) with two different
definitions of functions g, corresponding to the case where TCAs are not inoculated
in the system or to the case where they are administered starting from time t = T/2,
as well as with a given initial condition f (t = 0,u), which mimics a sample where
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cells mainly express the genotypic-phenotypic profiles corresponding to u = 0.15
and u = 0.85, at the beginning of observations. Standard fixed point arguments can
be used to prove that the Cauchy Problems here considered are well-posed in the
sense of Hadamard (i.e. the solution exists, it is unique and depends continuously
on the initial data).

The following considerations and assumptions hold along all simulations:

- We let genotypic-phenotypic changes to be small; thus, we set ε = 0.001.

- We arbitrarily define the proliferation rate κ(u) in such a way that the most prolif-
erating cells are characterized by four among the possible genotypic-phenotypic
profiles, i.e.

κ(u) = κC ⇐⇒ u ∈ {0.05,0.25,0.75,0.95}.

- Since the most proliferating cancer cells need more resources to survive than the
others, we assume these cell to be prone to fail in the competition for resources.
For this reason, we let function µ to be proportional to function κ , i.e.

µ(u) = βκ(u), 0 < β < 1.

- Function g is defined in such a way that inoculated TCAs are mainly able to act
against those cancer cells that express the genotypic-phenotypic profiles corre-
sponding to u = 0.25 and u = 0.75.

- Parameters α , µT and θ T are set equal to suitable non-zero values selected with
exploratory aim and we fix T = 100.

3.1 Effects of mutations and proliferation in absence of
therapeutic agents

We focus on the role played by mutation and proliferation phenomena in cancer
dynamics, considering the additional definition for g(t,v) that mimics a scenario
where TCAs are not inoculated. The results summarized by the left panel of Figure
1 illustrate how, when ε is small, f (t,u) concentrates, across time, around the points
where κ(u) attains its maximum, i.e. u = 0.05, u = 0.25, u = 0.75 and u = 0.95.

Since intra-tumor heterogeneity is due to the presence, within the same tumor
aggregate, of cells expressing several genotypic-phenotypic profiles, these results
support the idea that a strong reduction in heterogeneity occurs, if mutations cause
small changes in the genotypic-phenotypic profiles. In fact, only cells endowed with
strong proliferative abilities can survive inside the sample, while weakly prolifera-
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tive mutants die out. Thus, we are led to the same conclusions drawn in (8): cancer
progression selects for highly proliferative clones.

From an evolutionary perspective, the left panel of Figure 1 also highlights how
branching patterns may arise in cancer dynamics, at least in those cases where, at the
beginning of observations, tumor cells mainly express some genotypic-phenotypic
profiles that are different from the most proliferating ones.

3.2 Controversial role of targeted chemotherapeutic agents

The following computational analysis are meant to deepen the role that TCAs can
play in cancer evolution. In particular, we make a comparison between the numerical
solutions obtained with the two expressions of g(t,v) that mimic the scenarios with
and without therapies.

Figure 2 shows how, if TCAs are inoculated in the system, the picks of f (t,u)
centered in u = 0.25 and u = 0.75 vanish over the time interval (T/2,T ], since,
in the case at hand, g(t,v) is assumed to be mainly concentrated in these points.
Moreover, the same figure highlights how f (T,0.05) and f (T,0.95) are greater in
the case with TCAs (solid lines) rather than in the case without therapeutic agents
(dashed lines).

The results summarized by Figure 2 support the idea that, in those cases where
environmental conditions select for strong proliferative abilities and several sub-
populations of highly proliferative clones are found inside the system, if TCAs cause
the extinction of some sub-populations, the clonal expansion of cells in the other
ones is intensified.

These simulations should be interpreted as a virtual version of some classic early
experiments in evolutionary biology, which have been devoted to test whether the
exposure of a sample population to a selective force causes new mutations to occur
or selects for pre-existing mutants. The obtained results support the second case
and reinforce the considerations drawn in (4; 7; 8; 9), suggesting that TCAs may
introduce an additional selective pressure that reinforces the selection for the fittest
clones. This is a well known outcome of many pharmacotherapies that, unless they
full eradicate the mutated cells, generally fail in cancer treatment.

3.3 Critical analysis

In this chapter we have proposed a simple mathematical model for the dynamics of
cancer cells exposed to targeted chemotherapeutic treatments, with the aim of en-
lightening the causes for some emerging phenomena observed in tumor progression.

At first, we have analyzed the role that proliferation and mutations play in car-
cinogenesis, under a regime of small genotypic-phenotypic changes. Then, still as-
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Fig. 1 Dynamics of f (t,u) in a small mutation regime (i.e. ε → 0). Left panel: in absence of
therapeutic agents. Function f (t,u) concentrates, across time, around the points where κ(u) (i.e.
the proliferation rate of cells) attains its maximum. This result supports the idea that, in the limit
of small mutations, only cells endowed with strong proliferative abilities can survive inside the
sample. Right panel: in presence of targeted chemotherapeutic agents inoculated at t = 50. Function
f (t,u) concentrates around the points where κ(u) attains its maximum (i.e. u = 0.05, u = 0.25,
u = 0.75 and u = 0.95) over the time interval [0,50], since we are letting ε → 0. However, due to
the fact that g(t,v) is mainly concentrated around point v = 0.25 and v = 0.75, the picks of f (t,u)
centered in u = 0.25 and u = 0.75 vanish over the time interval (50,100].

suming mutations to be small, we have examined the effects of targeted chemother-
apeutic agents.

The obtained results suggest that cancer progression selects for strong prolifera-
tive cells, while targeted chemotherapies might act as an additional selective pres-
sure, leading to the selection for the most fitting, and thus eventually most resistant,
cancer clones.

The same conclusions are obtained by other authors (5; 12) and support the de-
velopment of the so-called adaptive therapies, which are principally aimed at a sta-
bilization of tumor cells, instead of an unlikely full eradication (6).
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Traveling waves emerging in a diffusive moving
filament system

Heinrich Freistühler, Jan Fuhrmann, and Angela Stevens

Abstract Starting from a minimal model for the actin cytoskeleton of motile cells
we derive a spatially one dimensional model describing populations of right and
left moving filaments with intrinsic velocity, diffusion and mutual alignment. For
this model we derive traveling wave solutions whose speed and shape depend on
the model parameters and the type of alignment. We discuss possible wave profiles
obtained from analytical investigations as well as waves emerging in numerical sim-
ulations.

In particular, we will explicitly comment on the observed wave speeds and how
they are related to the model parameters. Moreover, some particularly interesting
patterns being composed of several wave profiles are discussed in some detail.

Finally, we shall try to draw some conclusions for the full cytoskeleton model
our system had emerged from.

1 Motivation and derivation of the model

Understanding the mechanisms of actin driven cell motility is of great importance
for a variety of biological processes such as wound healing, metastasis of cancer,
immune response, and many others. In (3), a minimal, spatially one dimensional
model for the actin cytoskeleton of a potentially motile cell at rest was proposed in
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order to understand the polarization of the cytoskeleton upon some external stimulus
which might drive the resting cell into directed motion.

We deduced a system consisting of four hyperbolic conservation equations for the
densities of barbed (B) and pointed (P) ends of right (subscript r) and left (subscript
l) actin filaments, respectively,

∂tBr(t,x)+∂x (vB(t,x,a) Br(t,x)) = 0, (1)
∂tBl(t,x)−∂x (vB(t,x,a) Bl(t,x)) = 0, (2)
∂tPr(t,x)+∂x (vP(t,x,a) Pr(t,x)) = 0, (3)
∂tPl(t,x)−∂x (vP(t,x,a) Pl(t,x)) = 0, (4)

and a parabolic reaction diffusion equation for the actin monomer concentration

∂ta(t,x)−D ∂xxa(t,x) = R(t,x,a,Br,Pr,Bl ,Pl). (5)

Each of the hyperbolic equations is coupled to the parabolic equation by the de-
pendence of the flux velocities vB and vP on the monomer density a. The reaction
diffusion equation in turn receives input from the conservation laws via the reaction
term describing the binding or release of monomers at polymerizing or depolymer-
izing filament ends.

Since in vivo, the cytoskeleton is permanently remodeled and filament tips are
subject to thermal fluctuations we now want to investigate the behavior of the hyper-
bolic part upon additional effects like diffusion and mutual alignment of filaments
while the monomer concentration is fixed to some specific value. Only upon includ-
ing these effects we can step beyond the very initial steps of cell polarization and
ask for aligned structures like stress fibers or lamellipodia.

To this end, let us assume constant parameters in the above model and a fixed
monomer density ā such that

vB(t,x, ā) = vP(t,x, ā)≡ v̄. (6)

Moreover, we assume the filaments to be very short so that as an approximation we
can identify barbed and pointed ends of either orientation, right and left.

We end up with two densities, ur and ul , of filaments moving to the left or right,
respectively, at velocity v̄ which shall be put to one for simplicity. Their movement
of is now governed by the particularly simple system

∂tur +∂xur = ε∂xxur (7)
∂tul −∂xul = ε∂xxul (8)

where we also allowed for the diffusion of filaments at a diffusion coefficient ε .
This can be interpreted as fluctuations of the rather small filaments in the crowded
environment inside a cell full of proteins and other obstacles. As ε takes small val-
ues, this parabolic system can be understood as a slightly but singularly perturbed
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version of its hyperbolic limit which is obtained for ε = 0 and corresponds to the
original hyperbolic part.

Introducing the total density u = ur + ul and the polarization w = ur − ul and
allowing in addition for mutual alignment of the particles we can rewrite this into

∂tu+∂xw = ε∂xxu (9)
∂tw+∂xu = ε∂xxw+ f (u,w). (10)

Here, the alignment term f describes the ability of particles moving in one direction
to reverse those with opposite direction of motion by mutual alignment.

Two families of alignment terms are considered which we will refer to as sub-
linear and superlinear type. For a given total density, say u = 1 for simplicity, the
prototypical examples take the forms

f (1,w) = αw
(
1−w2

)
(sublinear) (11)

and
f (1,w) = αw

(
1+ν w2− (ν +1)w4

)
(superlinear). (12)

2 Traveling waves

In this section, we are going to deduce the existence of traveling wave solutions to
the system (9), (10) and discuss some of their properties. In physical terms, these
wave patterns correspond to fronts of filaments moving at constant velocity as they
are observed in lamellae of moving cells (cf. (6)). Particular emphasis will be put on
the possible wave velocities.

2.1 Traveling waves for two reduced problems

Before investigating the full problem we focus on a simple auxiliary problem. Let
us consider the hyperbolic equations

∂tu+∂xw = 0 (13)
∂tw+∂xu = f (u,w) (14)

which result from (9) and (10) upon formally sending ε to zero.
We are looking for solutions of the type u(t,x) = U(x− ct) and w(t,x) =

W (x− ct) with the wave profiles U and W and the constant wave velocity c. The
corresponding system of ordinary differential equations reads

− c U ′+W ′ = 0 (15)
−c W ′+U ′ = f (U,W ). (16)
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As possible equilibria we identify the zeroes of f which are

1. the non-polarized state W = 0 with constant total density U > 0 with equally
many right and left moving filaments corresponding to a non-polarized cell,

2. and the totally aligned states W = ±U corresponding to all filaments moving in
the same direction.

Fig. 1 Possible heteroclinic
orbits for system (15), (16)
in the W - U phase space.
Yellow lines denote the equi-
libria of the system, colored
arrows represent possible or-
bits corresponding to different
velocities c.

We only obtain wave profiles connecting any of the totally aligned state to the
non-polarized state or vice versa. The corresponding wave velocities c are only re-
stricted by the conditions c 6= 0 and c 6= ±1. Possible examples of such profiles
appearing as heteroclinic orbits in phase space are depicted in figure 1.

Passing from the hyperbolic problem (13), (14) to the full problem (9), (10) we
briefly consider the intermediate problem (13), (10) with a diffusion term only in
the equation for the polarization w. The system of traveling wave equations for this
problem reads

− cU ′+W ′ = 0 (17)
−cW ′+U ′ = εW ′′+ f (U,W ). (18)

This can be reduced to a single second order equation for W which in turn can be
written as a first order system consisting of two equations. We are thus dealing with
an effectively two dimensional phase space and can again find heteroclinic orbits
between the equilibria which translate into traveling waves for the corresponding
system of partial differential equations.

Using a sublinear alignment term f , we find two critical wave velocities c∗ > 1
and c∗ < 1, determined by the parameters, which define the boundary between the
existence and non existence of monotone traveling wave profiles connecting one
of the fully polarized states W = ±U with the symmetric state (W = 0, U = Ū),
similar to the minimal wave velocity for the Fisher-KPP equation (cf. (5)).

More precisely, there are monotone waves between a totally aligned and the sym-
metric state exactly for velocities c satisfying
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0 < |c| ≤ c∗ or |c| ≥ c∗. (19)

Denoting by
Fw := ∂w f (Ū ,0)

the partial derivative of the alignment term with respect to the polarization, evaluated
at the non-polarized equilibrium W = 0, we find the critical velocities to behave like

c∗ ≈ 1+
√

Fwε and c∗ ≈ 1−
√

Fwε (20)

for small values of the product Fwε .

Fig. 2 Precise dependence of
the critical velocities c∗ (blue)
and c∗ (red) on the value
a := Fwε . 0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
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We note that for the superlinear versions of the alignment term we also find such
critical velocities, say ĉ and č. However, for given parameters α and ε these satisfy
ĉ > c∗ and č < c∗. Moreover, the corresponding conditions to (19) are in that case
sufficient but not necessary anymore for the existence of monotone waves meaning
that these monotone waves might potentially exist also with speeds closer to one.

2.2 Traveling waves for the full problem

Returning to the question for traveling wave solutions to the full problem (9), (10)
we reduce the system of ordinary differential equations being satisfied by the trav-
eling wave profiles to the first order system

U ′ = Z , ε Z′ =−c Z +V (21)
W ′ = V , ε V ′ = Z− c V − f (U,W ) (22)

with Z and V having been introduced as momentum variables.
For c 6= ±1, system (15), (16) is the reduced system of this full problem in the

normally hyperbolic limit ε ↘ 0. According to the singular perturbation theory de-
veloped by N. Fenichel in (2) and refined by P. Szmolyan in (4), we can thus assert
the existence of heteroclinic orbits connecting the totally aligned equilibria with the
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non-polarized state or vice versa at least for sufficiently small diffusion coefficients
ε where the meaning of being sufficiently small depends on the wave speed c.

The full dynamical system cannot be reduced to an effectively two dimensional
problem. We therefore cannot exclude the possibility of further heteroclinic orbits
connecting both totally aligned states with one another while passing through the
symmetric state W = 0 at momenta Z and V being non zero. In the simulations
described in the following section we will indeed find this type of wave profiles.

3 Traveling waves found by simulations

In this section, we will first discuss which types of traveling wave profiles can be
found in the simulations and which wave speeds actually do occur.

3.1 Typical wave patterns

The easiest wave pattern consists of a single traveling front connecting two equilib-
ria. Given the model parameters and having chosen a wave velocity we can deduce
the wave pattern by integrating the system of ordinary differential equations and
plugging the result into the simulations as initial condition.

In doing so we observe that the system does not stick to the initial data but selects
a wave profile with a distinct velocity which only depends on the model parameters.

In particular, it was not possible to find any parameter setting and initial con-
ditions leading to oscillating wave profiles. As is well known for Fisher-KPP like
equations (cf. (5)), these non-monotone fronts seem to be unstable.

In analogy to the patterns obtained by gluing together different wave profiles we
observe two types of solutions which typically emerge as long time behavior. Both
of them are characterized by a complete depletion of filaments in the center of the
domain and by symmetric equilibria to the far left and to the far right.

Which of these profiles emerges depends on the type of initial conditions. One
of these solutions consists of one hump traveling in either direction whereas the
second type has two humps per direction − one being totally left aligned, the other
one totally right aligned. The two typical initial conditions and the emerging wave
patterns are shown in figure 3.

Very similar patterns with only one hump moving in only one direction can be
observed if the initial data are chosen to by asymmetric.

Let us finally note that the steepness of either traveling wave profile increases
with its velocity. Moreover, the profiles are significantly steeper if the alignment
term is superlinear as compared to the sublinear version.
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Fig. 3 Typical initial conditions (left) and the traveling wave profiles emerging from them (right).
Top: Pattern with a single hump and one wave profile moving to each direction, bottom: pattern
with two traveling wave profiles per direction. In the emerging patterns, in the zoom boxes, the
traveling wave profiles of the right moving waves are shown in detail. Note that the pictures of the
initial data show only a small region in the center of the domain.

3.2 Observed wave velocities depending on the parameters

The first thing to note is that we were not able to find a combination of parameters
and initial data leading to a stable wave profile of velocity |c| < 1. In fact, the ob-
served traveling waves with the non-polarized equilibrium (W = 0, U1 > 0) as one
of their asymptotic states have velocities whose absolute value is at least c∗. The
absolute values of the velocities of the wave profiles connecting two totally aligned
states lie between 1 and c∗.

Concerning the dependence of the velocities on the parameters α and ε we ob-
serve the following properties which are in good agreement with the predictions we
made for the auxiliary problem (13), (10).

1. For any alignment term f and for all observed wave profiles, the wave speed only
depends on the product αε rather than on both parameters individually.

2. For each type of f , we indeed find the absolute velocity |c| to behave like 1 +√
αε at small values of the product αε for waves connecting a totally aligned

state and the non-polarized state.
3. For given parameters, the superlinear alignment term leads to wave profiles

which are steeper and faster than those according to sublinear alignment.
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4 Conclusion

In order to understand the effect of diffusion and mutual alignment of actin filaments
in a minimal model for the cytoskeleton we deduced a basic system of two parabolic
equations describing the motion of aligning filaments in one space dimension. For
this system, we found different types of traveling wave solutions, depending on the
type of alignment and the model parameters α (alignment strength) and ε (diffusiv-
ity of the filaments).

In particular, we found solutions to the system that are composed of different
traveling waves and in some cases of additional diffusion profiles. These solutions
emerge from minor perturbations of the completely symmetric steady state describ-
ing a non-polarized cell at rest which indicates that a small bias in the data can lead
to large fronts of filaments as in a cell during directed motion.

Moreover, we found that the velocities of the emerging wave profiles depended
on the system parameters and the alignment type in a predictable way.

Recalling the motivation of our model it seems promising to allow for diffusion
and alignment of filaments in our cytoskeleton model. We might then expect the
formation of fronts of total polarization of the cytoskeleton which can be interpreted
as the precursor of lamellipodial structures and actin waves as described in (6). This
is a major challenge for the future as it requires to keep track of the connection
between the barbed and pointed end of each filament which should only be possible
by incorporating the filament length as an additional variable as it has been done in
(1), for instance.
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Homing to the niche: a mathematical model
describing the chemotactic migration of
hematopoietic stem cells.

Maria Neuss-Radu

Abstract It has been shown that hematopoietic stem cells migrate in vitro and in
vivo following the gradient of a chemotactic factor produced by stroma cells. In
this contribution, a quantitative model for this process is presented. The model con-
sists of chemotaxis equations coupled with an ordinary differential equation on the
boundary of the domain and subjected to nonlinear boundary conditions. The ex-
istence and uniqueness of a local solution is proved and the model is simulated
numerically. It turns out that for adequate parameter ranges, the qualitative behavior
of the stem cells observed in the experiment is in good agreement with the numeri-
cal results. Our investigations represent a first step in the process of elucidating the
mechanism underlying the homing of hematopoietic stem cells quantitatively.

1 Introduction

Stem cells are cells with the dual ability to self-renew and to differentiate into mul-
tiple cell types. This means that, during the life span of an organism, somatic stem
cells give rise to non-self-renewing functionally mature cells, e.g. liver cells, muscle
cells, nerve cells, while maintaining a pool of primitive stem cells. Hematopoietic
stem cells (HSCs) are the origin of all myeloid/erythroid and lymphoid cell lin-
eages. The natural microenvironment for the HSCs is the stem cell niche in the bone
marrow consisting of, among others, stroma cells.

HSCs are characterized by a rapid migratory activity and their ability to “home”
to their niche in the bone marrow. These properties are very important in the ther-
apy of leukemia, which consists mainly of two steps. The first step is a chemother-
apy and whole body irradiation to irradicate the patients hematopoietic system. The
second step is the transplantation of HSCs obtained from the mobilized peripheral
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blood of a donor. After transplantation, HSCs find their way of their own accord into
the stem cell niche in the bone marrow. Upon homing, the HSCs have to multiply
rapidly to regenerate the blood system.

It is a crucial aim of research, to reduce the time necessary for regeneration,
a period in which the patient is missing an effective immune system. To achieve
this goal, the underlying mechanism of the homing process of the HSCs has to
be understood and mathematical models able to quantify this process have to be
formulated.

In (1) it was shown that HSCs migrate in vitro and in vivo towards a gradient of
the chemotactic factor SDF-1 ( stromal cell-derived factor-1) produced by stroma
cells. In (14) the experimental assay from Fig. 1 is used to investigate the migration
of the stem cells toward the stroma cells .

Fig. 1 HSCs (white arrows) were initially seeded on the lower half of the Terasaki well (A). They
migrated within 2 hours toward the stroma cells (black arrows) and established cell-cell contact
with the stroma cells (B,C). From (14).

In this contribution, we describe the migration process observed in (14) quantita-
tively using a chemotaxis model adapted to our situation. The results presented here
are based manly on the paper (7). The mathematical model consists of a nonlinear
system of two coupled reaction-diffusion equations describing the evolution in time
and space of the concentration of stem cells and of the chemoattractant inside the
domain, together with an ordinary differential equation (ODE) defined on the part
of the boundary coated with stroma cells. This ODE describes the evolution of the
stem cells which are attached to the stroma cells. The attachment and detachment
of the stem cells at the boundary as well as the production of the chemoattractant
by stroma cells are modeled by nonlinear boundary conditions involving the normal
fluxes of the stem cells and of the chemoattractant, as well as the concentration of
the attached stem cells.

The chemotaxis equations in the classical setting, i.e. with homogeneous Neu-
mann or Dirichlet boundary conditions, have been studied in a large number of
papers, a summary of which can be found e.g. in (5). The solutions may exhibit
singularities in finite or infinite time, see e.g. (6), (11). These singularities model
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Fig. 2 The domain Ω with
outer normal vector ν . Stroma
cells are cultivates on the
boundary portion Γ1. No cells
or chemoattractant can leave
the domain via Γ2. W

G 1  ,  s t r o m a  c e l l s

nG 2  ,  n o  f l u x

aggregation processes which lead to the formation of δ -functions in the cell con-
centration. However, in a special case, i.e. for properly chosen sensitivity functions,
linear degradation and suitable production of the chemoattractant, in (13) the exis-
tence of global weak solutions was proven.

In our paper, similar sensitivity functions as in (13) are used. However, the non-
linear consumption term for the chemoattractant and the nonlinear boundary condi-
tion which is new in connection with the chemotaxis equations, require new ideas
in the study of the solutions. Here, the existence and uniqueness of a local solution
is proven.

The mathematical model formulated in this paper gives a contribution to the
quantitative modeling of the homing and engraftment of hematopoietic stem cells.
To our knowledge, it is the first model describing the stroma controlled chemotactic
migration of HSCs. The simulations in Section 4 show that for adequate parameter
ranges, the solutions reproduce the qualitative behavior observed in the experiment.
Thus, after identifying the relevant parameter of the model using experimental data,
we will be able to determine quantitatively the influence which single parameters or
combinations of parameters have on the behavior of the HSCs, and thus to provide
possibilities to shorten the time needed for homing.

2 Mathematical model

Based on information from the experiment in (14) we set up the following math-
ematical model describing the chemotactic movement of HSCs, see also (12). We
consider a domain Ω ⊂R2 of class C1 representing the Terasaki well, see Fig.2. The
boundary of the domain consists of two parts, ∂Ω = Γ1∪Γ2, with Γ1∩Γ2 = /0 and Γ2
being a closed subset. The boundary portion Γ1 represents the part of the boundary
where the stroma cells are cultivated. We denote by ν the outer unit normal to the
bounday ∂Ω . The unknowns of our model are the concentration of the stem cells in
the domain Ω denoted by s(t,x), the concentration of the chemoattractant (SDF-1)
denoted by a(t,x), and the concentration of the stem cells bound to stroma cells at
the boundary part Γ1, denoted by b(t,x).
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The evolution of the concentrations s(t,x),a(t,x) is described by the following
chemotaxis system

∂ts = ∇ · (ε∇s− s∇χ(a)), in (0,T )×Ω (1)
∂ta = Da4a− γas, in (0,T )×Ω (2)

together with the boundary conditions

− (ε∂ν s− sχ ′(a)∂ν a) =
{

c1s− c2b, on (0,T )×Γ1
0, on (0,T )×Γ2

(3)

Da∂ν a =
{

β (t,b)c(x), on (0,T )×Γ1
0, on (0,T )×Γ2.

(4)

The evolution of the concentration b(t,x) is described by the ODE

∂tb = c1s− c2b, on (0,T )×Γ1 (5)

and b = 0 on (0,T )×Γ2. We also impose the initial conditions

s(0) = s0, a(0) = a0 in Ω , and b(0) = b0 on Γ1. (6)

In our model, equation (1) describes the random migration of the HSCs, with
random motility coeffecient ε , as well as the directional migration in response to
the spatial gradient of the chemoattractant. Equation (2) describes the diffusion of
the chemoattractant and its consumption due to binding to the receptors expressed
on the stem cell membranes. The boundary condition (3) describes the attachment
and detachment of stem cells at the part of the boundary coated with stroma cells.

The ODE (5) describes the evolution of the bound stem cells due to the attach-
ment and detachment of stem cells at the boundary Γ1.

3 Existence and uniqueness of a weak solution

The main result of this section is the existence and uniqueness of a weak solution of
the initial boundary value problem (1)− (6). The precise meaning of the concept of
weak solution, can be found in (7).

Theorem 0.1. Let the data of our model satisfy the assumptions given in (7), Section
2.1. Then, there exists T > 0 and a unique weak solution (s,a,b) of the system
(1)− (6). This solution is positive and has the additional regularity properties a ∈
L2(0,T ;H2(Ω))∩C([0,T ];H1(Ω))∩L∞(0,T ;L∞(Ω)) and b ∈C([0,T ];L2(∂Ω)).

The proof of Theorem 0.1 consists of several steps. First, we cut off the con-
centration s of stem cells in the nonlinear terms. Using a fixed point argument, we
prove the existence of a solution for the resulting system and afterwards, we show
uniqueness and positivity of this solution. Finally, we prove that the concentration
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of stem cells in the cut-off system is bounded, so that this solution is the solution of
our original system as well. For a detailed proof, see (7), Theorem 1.

4 Numerical results

In this section, we present numerical simulations for our model (1)-(6). The tool
kit Gascoigne, see www.gascoigne.de, is used. The simulation is realized on the
rectangle (0, 1,5)× (0, 1) with a grid with 129×65 nodes.

The stroma cells are concentrated on the right boundary (x1 = 1,5) where they
are mainly distributed in three clusters. A precise description of the distribution of
stroma cells and of the function β (t,b) in the production rate of the chemoattractant
is given in (7). For the simulation, we consider a linear sensitivity function χ(a) =
10a. We choose as initial conditions a0 = 0, b0 = 0 and

s0(x1,x2) =
{

(1+ cos(5π(x1−0,4)))sin(πx2) for 0,2≤ x1 ≤ 0,6
0 otherwise.

Fig. 3 Initial concentration of the stem cells s0.

The Figures 4, 5, and 6 describe the time evolution of the solution components s
and b.

5 Discussion

In this contribution, we give a quantitative model for the movement of HSCs in
chemotactic gradients, based on the experimental results from (14), in a close col-
laboration with the stem cell research group of Prof. Ho (Medical Clinic, University
of Heidelberg). This is a first step in the process of elucidating the mechanism un-
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Fig. 4 The free and bound stem cells s and b at time t = 10.
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Fig. 5 The free and bound stem cells s and b at time t = 45.
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Fig. 6 The free and bound stem cells s and b at time t = 100.
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derlying the homing of HSCs quantitatively. Methods enabling us to control the
homing process, the motility and motion of stem cells are highly valuable for medi-
cal reasons. In the therapy of some forms of leukemia the ability of HSCs to home
into their niche in the bone marrow is of utmost importance for the regeneration of
the blood system. It is a crucial aim to reduce the time necessary for regeneration,
and thus the risk for the patient and the costs for the health system.

So far, the mechanisms and specific molecules involved in the homing process
are still not fully understood. However, there is evidence that human CD34+/38−
stem cells are attracted by stromal cell-derived factor-1 (SDF1), a chemoattractant
produced by bone marrow stromal cells, see (1), (14).

The mathematical modelling may help to order the achieved experimental results
and to pose structured questions to the experimentalists. It played already a substan-
tial role in designing experiments by suggesting and selecting possible factors and
mechanisms, which are important for a quantitative description. E.g. for our model,
the random motility coefficient and the chemotactic sensitivity are two important pa-
rameters. Whereas the random motility coefficient can be measured directly, e.g. by
measuring migration in a uniform concentration of the chemoattractant, the chemo-
tactic sensitivity is difficult to measure directly. With the help of our model, we can
determine numerically if the chemotactic sensitivity and the migration velocity of
the HSCs are correlated. In case of a strong correlation, an experiment for measuring
the migration velocity has to be designed. For the example considered in Section 4,
the migration velocity can be measured by the slope of the position of the maximum
of HSCs’ concentration with respect to time, see Fig. 9.
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Fig. 7 Variation in time of the position of the maximum of the HSCs’ concentration. The x1-
coordinate is plotted. Due to the symmetry of the problem the x2-coordinate is constant, equal to
0.5. The jump in the position of the maximum, seen after 438 time steps, is due to the accumulation
of stem cells at the boundary x1 = 1,5 and the formation of the absolute maximum at the boundary.

Experimental research, taking into account results of our modelling and simula-
tions, are just going to provide the data needed for the calibration. After calibration
the model can be used for computer experiments. Furthermore, we remark that the
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model derived here is representing a larger class of systems modelling spread in
space and time controlled by processes on the boundary.
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8. Ladyženskaya, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasilinear Equations of

Parabolic Type. AMS, Translations of Mathematical Monographs, 23 (1968)
9. Lions, J.: Quelque méthodes de résolution des problèmes aux limites non linéaires. Dunod,
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The Language of Systems Biology: bridging the
scales

Marcello Delitala and Thomas Hillen

The first Kepler workshop in Heidelberg, May 16-20, 2011, has attracted a col-
orful mix of presentations from biologists, system biologists and mathematicians.
The very interesting presentations were followed by round table discussions. It was
curious to observe that eventually each discussion would revolve around ”systems
biology”. Some people would proudly claim that they are system biologists, while
others were hesitant to even mention this ”unspeakable” word.

Many mathematicians have no particular opinion in favor or against systems bi-
ology, and consider it just to be another name for mathematical modelling of biolog-
ical systems. But there is more to it: systems biology must be seen with the eyes of a
historian. In their early studies, biologists enjoy a basic education in general biology.
However, very quickly, they specialize into all kind of biological fields, fragmented
in several sub-disciplines. They become geneticists, or molecular biologists, or cell
physiologists, or zoologists, or botanists, or ecologists etc. Each of these groups
represents a certain natural scale, from genes and molecules to animals/organisms
and ecosystems. Each area has its own methods and techniques and, very often, the
borders between those areas are strickt and interactions are quite limited.

Several successes have been achieved in each of those fields, largely increasing
the knowledge and the understanding of many biological areas: nevertheless, the
integration and interpretation of data is still not sufficient to understand and catch the
global nature of the system. The complexity of the processes and properties of the
whole cannot be simply understood by diagrams of their mutual interconnections.

Now, the rapid development of genetics in the last 20 years caused a dilemma.
We all know that genes influence everything, the behavior of cells, the phenotype of
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individuals and the interactions within an ecosystem. Gene sequencing data become
readily available and we want to benefit from them. How do the genes influence the
cells, the individuals and the populations? These questions leave the area of genetics
and require knowledge and expertise in these other areas of biology. A geneticist is
not a cell physiologist or zoologist. The question is: How to bridge the scales from
genes to cells, individuals and populations?

Thus there is the need for a multiscale modelling able to integrate and cross infor-
mation from different scales layers. Biological systems are hierarchically organized
with feedback and influences up and down the scales (both top down and bottom
up).

The need arose for an area of biology that can connect these different areas and
facilitate exchange between their methods. This is what is now called ”systems bi-
ology”. A definition, which most system biologists adhere to, is the science that in-
vestigates the interaction of systems that act on various scales. For many biologists
this new understanding must have been like a revelation. The borders disappear and
unthinkable opportunities open up: this created the boom which we experience now.

The large comprehensive data bases, made available from new experimental tech-
niques and progresses in molecular biology, stimulated new hypothesis and experi-
ments, demonstrating, after the undoubtable successes, the limit of classical reduc-
tionism. Biologist need to investigate relationships and complex structures with the
need of mathematical techniques.

What did mathematicians do in the meantime? The applied mathematicians are
trained from the very beginning to deal with multiple scales. When they learn about
the diffusion equation, then they learn that the diffusion equation is not only applied
to diffusion of molecules in solution, it is also used to model heat transport, cell
movement, cancer invasion, population dynamics, epidemic spread, and even spread
of genes in a population. They feel never restricted by scales and and for instance
the areas of perturbation analysis, multiscale methods, homogenization, mean field
approaches etc. are widely used from applied mathematicians.

Hence, on the one hand, we see biologists who encounter a scientific revolution,
and on the other hand we have mathematicians who say ”we told you so - long ago!”.
Of course, now biologists become suspicious as if mathematicians have everything
figured out - of course, they have not. But indeed, mathematics does have the right
tools available. Multiscale methods are needed to bridge scale and mathematics is
and will be the language of systems biology. In this context, it is evident that much
hope is projected in this new approach of systems biology. It appears as the key to
connect scales and finally to understand whole organisms.

In this direction, investigating the interactions of systems that act on various
scales emerges as a powerful approach of the research in life sciences for a deeper
insight into a complex world. System biology may help biologists to validate their
mental models, exploring new pathways and dynamics: in general, system biology
is necessary to achieve a deeper understanding of the biological processes and con-
sequently a better control and prediction.

To benefit most from this development, we must give up the idea that one person
can do everything, and involve ourselves in close collaboration between Biologists,
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Computer Scientists and Mathematicians. Fragmentation of sciences lead biologists
to be trained with little mathematical tools, as well as mathematicians are not trained
in biology. Thus there is the need of an interdisciplinary approach to tackle the com-
plexity of the biological systems by establishing a common protocol and language
between researchers from different areas.

In general, a system-type of approach is needed to deal with complex systems
where the overall behaviour is not explained by its constituent only (the sum is more
than its parts) and a reductionistic approach fails. As already discussed in the Pref-
ace of this Volume, an increasing number of applications shows these ”Complexity”
features: then the mathematical methods and tools developed in one specific re-
search field may suggest and inspire new paths in other disciplines, seemingly far
way each other.
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