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Microtubules (MTs) are protein filaments that provide structure to the cytoskeleton of cells
and a platform for the movement of intracellular substances. The spatial organization of
MTs is crucial for a cell’s form and function. MTs interact with a class of proteins called
motor proteins that can transport and position individual filaments, thus contributing to
overall organization. In this paper, we study the mathematical properties of a coupled par-
tial differential equation (PDE) model, introduced by White et al. in 2015, that describes
the motor-induced organization of MTs. The model consists of a nonlinear coupling of a hy-
perbolic PDE for bound motor proteins, a parabolic PDE for unbound motor proteins, and
a transport equation for MT dynamics. We locally smooth the motor drift velocity in the
equation for bound motor proteins. The mollification is not only critical for the analysis of
the model, but also adds biological realism. We then use a Banach Fixed Point argument to
show local existence and uniqueness of mild solutions. We highlight the applicability of the
model by showing numerical simulations that are consistent with in vitro experiments.
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1. Introduction

All eukaryotic cells contain a cytoskeleton. The cytoskeleton is comprised of three main
protein filaments: Microtubules (MTs), actin, and intermediate filaments (IFs). The cy-
toskeleton, as the name suggests, acts as the skeleton for a cell. The filaments of the
cytoskeleton are similar between various cell types. However, the structure, function,
and overall organization of the cytoskeleton are different depending on cell type, as well
as cell-cycle stage. One of the primary roles of the cytoskeleton is to help cells main-
tain shape and internal organization, providing mechanical support that enables cells to
carry out essential functions, like division and movement. However, the mechanism of
organization for the protein filaments that make up the cytoskeleton is not completely
understood, and so an in depth study of the spatial patterning of such filaments is im-
portant.

In this paper, we focus on the mathematical properties of the model of White et al.

∗Corresponding author. Email: hillen@ualberta.ca



April 22, 2016 Journal of Biological Dynamics JBD

[35], which was developed to study the qualitative and quantitative features of patterns
formed by one of the three main cytoskeletal components, MTs. In particular, we give a
novel existence and uniqueness result for the model. The model consists of a nonlinear
coupling of three partial differential equations (PDEs). The first equation is of hyperbolic
type (equation (1a)), the second equation is parabolic (equation (1b)) and the third is
a transport equation (equation (2)). Each type of equation has its specific properties.
For example, hyperbolic models transport discontinuities and they can form shocks ([3]),
parabolic models regularize ([4]), and transport equations are also hyperbolic but they
regularize moments ([5]). Together they form a complex mathematical model, and the
formulation of a suitable solution theory is not trivial.

For completeness, we first give a brief introduction of the other two main cytoskeletal
components, actin and intermediate filaments (IFs), in Section 1.1. Here we suggest that,
in some cases, actin can be modelled in a similar fashion as MTs. Then, in Section 1.2,
we give a detailed description of the components involved in MT organization and we
briefly review other mathematical models for MT patterning. Lastly, in Section 1.3, we
give a brief outline of the main components of the paper.

1.1. A Brief Introduction to Cytoskeletal Filaments: MTs, Actin, and IFs

MTs, which form cylindrical structures comprised of tubulin subunits, are the largest
of the three protein filaments (approximately 25nm in diameter). MTs are important
in providing structural stability for the cell, as well as aiding in cell division and cell
movement. Actin filaments, which are formed from actin monomers, are the smallest of
the three filament types (approximately 6nm in diameter). Actin is generally located
directly under the cortex of cells, providing the mechanical scaffold needed to produce
a cleavage furrow during cell division, and aiding in muscle contraction. IFs have an
intermediate size (approximately 10nm in diameter), and are comprised of various protein
types. Unlike MTs and actin, the function of IFs is not as well understood, however, it is
known that their disruption can have serious consequences for normal cell development.

Both MTs and actin are similar in that they are polar, meaning that subunits preferen-
tially associate with one end of the filament and dissociate from the other. MTs and actin
both undergo a type of dynamics referred to as treadmilling [17, 31]. MT treadmilling
is a chemical process that is defined as the steady-state unidirectional flux of subunits
through a polymer as a result of continuous net assembly at the front end of a polymer
and continuous net disassembly at the back end. The result is the directed (constant)
motion of a MT towards its front end. The front and back ends of MTs are called plus
and minus ends and for actin are called pointed and barbed ends. IFs are known to be
very stable structures and have not been found to treadmill.

MTs and actin are also similar in that they interact with a class of proteins called motor
proteins. Motor proteins are ATPases, and so are driven by the hydrolysis of adenosine
triphosphate (ATP). By transforming chemical energy into work, they are able to perform
a number of important functions [7]. Certain types of motor proteins can walk along
either MTs or actin, and when connected to two filaments simultaneously, the motors
can provide pushing and pulling forces that help to organize the filaments into various
configurations. Motor proteins are, in general, polymer specific, and will walk along only
one type of filament. MTs and actin can also be transported along a directed path by
sliding. Sliding occurs when the cargo domain of a motor is attached to a non-moving
substrate (e.g., motors that are absorbed (stuck) to a cover-slip [27, 29]), while the motile
part (the motor domain) walks along a filament. The result is the directed transport of a
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filament along its axis. Unlike MTs and actin, there is no consistent data to suggest that
IFs associate with motor proteins. However, they do interact with many other proteins,
and this interaction helps to contribute to their overall spatial organization within a cell.

The dynamic interactions between MTs and motor proteins are similar to those be-
tween actin filaments and motor proteins. The class of motor proteins that interact with
actin filaments are referred to as myosin-type motors. Such actin/myosin systems have
been studied both experimentally and theoretically [8, 15, 16, 22, 25]. Actin can take on
many complex organizations, and such organization is crucial for normal cell function. For
example, actin forms tight parallel bundles, called filopodia, at the front of fibroblasts,
allowing them to migrate in the direction of a wound. Also, during muscle contraction,
actin fibers form tight anti-parallel bundles. Theoretical models have been developed to
better understand the patterns formed by the interactions of myosin and actin alone.
For example, in [16], the authors use a Monte Carlo modelling approach to model actin
movement. They consider both actin rotation (as a result of myosin II motors traversing
filament pairs) as well as polymerization and depolymerization of filaments. They find
that optimal motor speeds (high speeds) result in alignment of filaments, whereas de-
polymerization results in disorganized actin structures. Theoretical models developed to
describe actin and myosin dynamics have provided useful insight into the possible mech-
anisms involved in actin organization. Our modeling framework for the interaction of
MTs and motor proteins will incorporate some of the mechanisms from the actin-myosin
models (e.g., filament rotation due to interaction with motors, as well as the effect of
motor speed on filament organization).

1.2. Microtubules and Motor Proteins

MTs are dynamic protein polymers formed through the self-assembly of α-, β-tubulin
dimers [11, 30]. They grow through the addition of GTP (guanosine triphosphate) -bound
tubulin dimers, generally at the plus end of the MT (the end where β-tubulin is located),
and shrink through dissociation of GDP (guanosine diphosphate) -bound tubulin at this
end. The minus end of the MT (the end where α-tubulin is located) is generally more
stable, being capped by stabilizing proteins. Two primary types of dynamic movement
that individual MTs undergo are treadmilling (as described in Section 1.1) and dynamic
instability [13, 32]. Dynamic instability refers to slow growth of a MT at its plus end,
followed by fast depolymerization.

There are two main classes of MT associated motor proteins: plus-end directed ki-
nesin motors and minus-end directed dynein motors. These motor proteins have many
important functions. One role is that they are able to walk along MTs (either towards
their plus end or minus end), carrying cargo (like proteins and vesicles) with them, dis-
tributing them to the appropriate locations within cells. Also, motor proteins affect MT
organization by helping to align MTs parallel with one another as they cross-link adja-
cent MTs [18, 19, 26]. As motors walk along the cross-linked MTs simultaneously, they
produce pushing and pulling forces that help to reorient the MTs. Finally, as stated in
Section 1.1, motors immobilized at their cargo domains can attach to a single MT and
slide it along a directed path.

Similar to actin, MTs can take on many different organizations within a cell, where
each particular organization is directly connected to the cellular processes that a cell
is carrying out. For example, during cell division, MTs form two asters centered at the
replicated centrosomes of a cell, separated by a tight anti-parallel bundle of MTs at the
cells center, called the mitotic spindle (examples of these patterns are shown in Figure
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Figure 1. Schematic of examples of MT organization in vivo and in vitro. In vivo organizations include (a) an
aster with minus ends at the center (typical of a centrosomal configuration found in non-dividing cells and moving

cells), (b) an anti-parallel bundle (similar to the mitotic spindle of typical dividing cell), (c) parallel bundles

(similar to those found along the axon of a neuron), and (d) mixed polarity bundles (similar to those found in
plant cells). In vitro examples include those described in (a), (b), (c), and (d), but also include (e) vortices, and

(f) an aster with plus ends at the center. Figure modified from [35].

1). Other examples of cellular processes where MT organization plays a key role are
cell motility and cell polarization. For these processes to be carried out many other
cellular components besides motor proteins contribute to MT organization. However,
when MTs interact with only motor proteins in vitro, they form a variety of patterns,
including asters, vortices, and bundles (see Figure 1) [18, 19, 26]. Theoretical modelling
of MT/motor systems has provided insight into the particular mechanisms required for
MT pattern formation [1, 9, 12, 14, 34, 35]. In particular, such studies have shown that
motor speed, directionality, processivity, as well as density, contribute to the types of
MT patterns that can form.

Some of the previous models of MT organization are local-type models and include cou-
pled reaction-diffusion equations to describe the dynamic interactions between motors
and MTs [12, 14]. Such models have been studied extensively and a theoretical frame-
work for existence and uniqueness is well established [23]. Also, under certain simplified
assumptions, explicit solutions to such models exist [14]. In this study, we analyze the
model for MT/motor dynamics as described in [33, 35], where MT movement is modeled
using a non-local transport equation, and motor protein interaction is accounted for by
coupling the transport equation to a system of reaction-diffusion equations. A non-local
model describing MT movement, which implicitly incorporates motor protein movement,
has been analyzed using energy methods [1, 2]. Also, a simplification of the model studied
here (where motor proteins are fixed in space) was analyzed in [34]. For such a simplified
system, semi-group methods can be applied to prove existence and uniqueness [21].

1.3. Outline of Main Results

In Section 2, we introduce our MT model given by equations (1a), (1b), and (2). The
main existence and uniqueness result of the paper is developed in Section 3. Here we
define the notion of a mild solution (Definition 3.1) for this system of mixed PDEs and
we use a Banach Fixed Point argument to prove local existence and uniqueness of mild
solutions. The mathematical analysis necessitates a regularizing assumption which we
include as spatial averaging of the motor drift velocity vb in (5). This assumption is not
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only critical for the mathematical analysis, it also adds realism to the model. The model
describes motor densities and filament densities, hence local irregularities in the average
filament orientation are averaged by the presence of many motors and many filaments.
Hence an averaged velocity is biologically reasonable. In Section 4, we show numerical
simulations that describe the formation of various MT patterns that are consistent with
in vitro experiments [19]. We close with a discussion about biological significance and
mathematical challenges.

2. A continuous model of MT dynamics

In this section, we develop our model of MT dynamics which is based on a model originally
described in [33, 35]. The primary difference in the model discussed in this paper is the
definition of motor movement along MTs. In [33, 35], the direction of motor movement
was assumed to be only along the average direction of MTs. Here we make the more
biologically reasonable assumption that the direction of motor movement can take on
a range of values, according to a normal distribution centered about the mean MT
direction. Since it is likely that some MTs will be pointed away from the mean orientation
and not perfectly aligned, we allow bound motor proteins to travel in directions other
than the mean orientation.

We incorporate the following basic assumptions in the construction of the model: (i)
motors bound to MTs move along them at some constant speed, (ii) motors can detach
from MTs at some constant rate and then freely diffuse, and (iii) MTs undergo directed
transport by treadmilling (although sliding can be an alternate mechanism for directed
transport), and MTs are realigned to the local mean MT orientation in the presence of
attached motors. We track the dynamics of the following variables in space (x ∈ Rn),
time (t > 0), and orientation (θ ∈ Sn−1) :

mb(x, t) [mass/volume] Bound motor density;
mu(x, t) [mass/volume] Unbound motor density;
p(x, t, θ) [mass/volume] MT density of minus ends.

2.1. Equations for motor protein dynamics

The equations for motor proteins are as follows:

∂mb

∂t
+∇x · (vb

εmb) = kon(p̃)mu − koffmb, (1a)

∂mu

∂t
−Du∆xmu = −kon(p̃)mu + koffmb. (1b)

Motor proteins exchange between a bound state mb, in which they move along MTs with
velocity vb

ε (defined in (5) below), and an unbound state mu, in which they diffuse freely
in the cytoplasm at the rate Du. Bound motors dissociate from MTs at the rate koff
while unbound motors bind to MTs at the rate kon(p̃), where p̃ is the total MT density
at each point in space and time (for details, see Assumptions (A1) in Section 3).
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2.2. Equation for MT dynamics

We model MT dynamics with a transport equation:

∂p

∂t
+ sMT θ · ∇xp = −λ(mb)p+ λ(mb)

∫
Sn−1

k(θ, θ̃,mb) p(x, t, θ̃) dθ̃ (2)

The second term on the left-hand side of equation (2) describes treadmilling. In partic-
ular, it describes directed transport of MTs along their axis θ at a constant speed sMT .
The term on the right-hand side of equation (2) describes a velocity jump process for
reorientation of MTs in the presence of motor proteins. The first term on the right-hand
side of equation (2) represents MT reorientation away from angle θ, while the second
term represents MT reorientation towards angle θ. The function λ(mb) describes the
rate of MT switching and the integral kernel k(θ, θ̃,mb) denotes the probability den-
sity of a directional switch from θ̃ to θ according to a Poisson process (for details, see
Assumptions (A1) in Section 3).

2.3. Equation for bound motor velocity vε
b

The definition of bound motor velocity vεb chosen here extends the choice made in the
original model in [33][35]. There it was assumed that bound motors follow the mean
direction of filaments at each location,

vb(p) = vbmax

∫
Sn−1

θp(x, t, θ)dθ. (3)

However, the mean direction of filaments can change drastically from one space point to
another leading to erratic movement of individual bound motor proteins. Moreover, mb

describes a motor protein density, hence the movement velocity is an average over all
individual motor velocities. To account for that, we choose a local spatial averaging over
the microtubule orientations. We define the function

ϕε(x) = ε−nϕ
(x
ε

)
(4)

such that ϕ ∈ C∞ with compact support [−1, 1] and limε→0 ϕε(x) = δ0(x). We then
define the following velocity for motor proteins that takes into account variable MT
orientation:

vb
ε = ϕε ∗ vb. (5)

In other words, bound motor proteins do not move exactly along the mean orientation
as specified by vb; for small ε, they move in directions that are close to the mean
orientation (see the discussion section for details on the role of the parameter ε in the
existence proof).

3. Existence and Uniqueness Result

In this section, we describe an existence and uniqueness result for the full model given
by equations (1a), (1b), and (2), where we make the following assumptions on the
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parameter functions.

Assumptions (A1):

• The density-dependent attachment rate kon(p̃) is assumed to be non-negative and
Lipschitz continuous with Lipschitz constant Lkon. Our standard example is to use
a second-order Hill function kon(p̃) = kmaxon

p̃
1+p̃ , where kmaxon > 0 is the maximum

attachment rate and

p̃(x, t) =

∫
Sn−1

p(x, t, θ)dθ

is the total MT density at each point in space x at time t. Here, Sn−1 denotes the
(n − 1)-dimensional unit sphere in Rn. Such a description for the attachment rate
suggests that motor proteins can only bind when MTs are present (i.e., kon(0) = 0).
Also, the association rate saturates to some finite value (i.e., kon(p̃) −→ kmaxon as p̃ −→
∞). Here, we assume that the saturation is due to steric interactions.

• The turning rate λ(mb) is assumed to be a non-negative and Lipschitz continuous
function of the bound motor density with Lipschitz constant Lλ. Our standard example
is λ(mb) = λmax

mb

1+mb
where λmax > 0 is the maximum switching rate. Our choice in

λ(mb) means that there is no switching if no motors are present. Also, the switching
rate saturates to some maximum value λmax, which we assume happens due to over
crowding of motors.

• The integral kernel k(mb, θ, θ̃) is a bounded, non-negative and integrable kernel that
depends Lipschitz continuously on mb with Lipschitz constant Lk and it satisfies∫

Sn−1

k(mb, θ, θ̃)dθ =

∫
Sn−1

k(mb, θ, θ̃)dθ̃ = 1.

For this choice in the integral kernel, there is a non-zero probability of orientation from
any angle. A biologically realistic example for this kernel is described in equation (32)
in Section 4.

• The constant koff > 0 is the detachment rate of motors from MTs, Du > 0 is the
diffusion rate of unbound motors, and sMT > 0 is the constant treadmilling rate. For
biological realism, these values must be positive.

• The spatial domain Ω is prescribed periodic boundary conditions. In this case we can
identify the domain with an n-dimensional torus, which we denote as Tn. For a fixed
time τ > 0, we use the notations

Ω = Tn and D := Ω× [0, τ ].

To state the main result on existence and uniqueness, we define a notion of mild
solutions below. To obtain the mild solutions, we use the method of characteristics for
the two hyperbolic equations (1a) and (2), and a variation of constants formula for the
diffusion equation (1b).

We define the Banach spaces

X = L∞(D) and Z = L∞([0, τ ], L∞(Ω)× L1(Sn−1)),
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and we consider given initial conditions

mb(x, 0) = b(x) ∈ L∞(Ω), mu(x, 0) = u(x) ∈ L∞(Ω),

and

p(x, 0, θ) = q(x, θ) ∈ L∞(Ω)× L1(Sn−1).

For a given function p(x, t, θ), the characteristic equation of the hyperbolic equation
(1a) is given by

dx(s)

ds
= vεb(p(x(s), s, θ)).

We denote the unique solution that goes through (x, t) as

α(x, s) such that α(x, t) = x and the anchor point is α0 = α(x, 0). (6)

Using this characteristic, we define a semigroup that is generated by the shift and decay
terms of (1a):

Λ(α(x, .), t) = exp

(
−
∫ t

0
(koff + (∇ · vb

ε(p(α(x, s), s, θ))

)
ds. (7)

The characteristic of the transport equation (2) is given by

dx(s)

ds
= sMT θ.

We denote the unique solution that goes through (x, t) with

β(x, s) such that β(x, t) = x and the anchor point is β0 = β(x, 0).

We can explicitly solve for β, namely

β(x, s) = x− sMT θ(t− s), β0 = x− sMT θt. (8)

Using the loss term in the transport model (2), we define a multiplier

Π(β(x, .), t) = exp

(
−
∫ t

0
λ(mb(β(x, s), s))ds

)
. (9)

Lastly, we denote the heat equation semigroup as exp(tDu∆).

Definition 3.1 A mild solution of the equations (1a), (1b), and (2) is a tuple

8



April 22, 2016 Journal of Biological Dynamics JBD

(mb,mu, p) ∈ X ×X × Z that satisfies the following equations:

mb(x, t) = b(α0)Λ(α(x, .), t)

+

∫ t

0
Λ(α(x, .), t− s)kon(p̃(α(x, s), s))mu(α(x, s), s)ds,

mu(x, t) = exp(tDu∆)u(x)

+

∫ t

0
exp((t− s)Du∆)[kon(p̃(x, s))mu(x, s) + koffmb(x, s)]ds

p(x, t, θ) = Π(β(x, .), t)q(x− sMT θt)

+

∫ t

0
Π(β(x, .), t− s)λ(mb(β(x, s), s))k(mb(β(x, s), s), θ)p̃(β(x, s), s)ds,

where α,Λ, β,Π are defined in (6), (7), (8), and (9), respectively.

Theorem 3.2 Consider the model given by equations (1a), (1b), and (2) and under
assumptions (A1). There exists a τ > 0 such that there exists a unique mild solution for
mb ∈ X, mu ∈ X, and p ∈ Z (X and Z as defined on page 10).

Proof. The proof is based on a Banach fixed point argument, and we give a brief out-
line first. The coupling of a hyperbolic equation (1a), a parabolic equation (1b), and a
transport equation (2) leads to interesting mathematical challenges. We address those
by using the appropriate estimates for each type of equation separately. We define four
maps between the Banach spaces X and Z as follows:

A : X × Z −→ X

(mu, p) 7−→ mb,

B : X × Z −→ X

(mb, p) 7−→ mu,

C : X −→ Z

mb 7−→ p,

T : X −→ X

mb 7−→ T(mb) = A(B(mb,C(mb)),C(mb)).

The goal is to show that T is a contraction in X for τ small enough (τ > 0). The
corresponding unique fixed point of T is then a unique mild solution as defined above.
The remainder of the proof is divided into subsections, related to the corresponding
estimates. For all sections that follow, we use the common symbol c for all bounded
time-independent constants that arise in the estimates, and we use an index cε to keep
track of constants that depend on the spatial averaging parameter ε > 0.

3.1. An estimate for mb

As a first step, we derive an expression for mb. We begin by considering the case where
we are given an mu ∈ X and p ∈ Z and we let m∗b denote the unique solution to the
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equation (1a). In particular,

∂m∗b(x, t)

∂t
+∇ · (vb

ε(p)m∗b(x, t)) = kon(p̃)mu(x, t)− koffm∗b(x, t), (10)

which we can rewrite as

∂m∗b(x, t)

∂t
+ vb

ε(p) · ∇m∗b(x, t) = −(∇ · vb
ε(p))m∗b(x, t) + kon(p̃)mu(x, t)− koffm∗b(x, t).

(11)
The characteristics of (11) are given by

dx

ds
= vb

ε(p(x(s), s, θ)) =: vb
ε(x, s). (12)

Since vb
ε is differentiable in x, there exists a unique solution, the characteristics α(x, s)

with α(x, t) = x. Then equation (11) can be written as on ODE along characteristics:

dm∗b(α(x, t), t)

dt
+ [koff + (∇ · vb

ε(α(x, t), t))]m∗b(α(x, t), t)

= kon(p̃(α(x, t), t))mu(α(x, t), t).
(13)

From equation (13) we define an integrating factor

Λ(α(x, .), t) = exp

(
−
∫ t

0
(koff + (∇ · vb

ε(α(x, s), s))

)
ds.

For given (x, t) we define the anchor point α0 := α(x, 0), which allows us to find a mild
solution of (11) as

m∗b(x, t), t) = b(α0)Λ(α(x, .), t)

+

∫ t

0
Λ(α(x, .), t− s)kon(p̃(α(x, s), s))mu(α(x, s), s)ds,

(14)

where t ∈ [0, τ ]. The velocity vb
ε in (5) is Lipschitz continuous in p and ∇ · vb

ε(p) is
bounded in L∞(D). The on-rate kon(p̃) is also Lipschitz continuous. If initial conditions
for m∗b are given as in Definition 3.1 there are constants such that

‖m∗b‖L∞ ≤ cecεt
(
‖b‖L∞ + ‖mu‖L∞

)
.

Hence for t ∈ [0, τ ] (11) defines a map

A : X × Z −→ X

(mu, p) 7−→ m∗b .

To show that this map is a contraction, we use the method of characteristics. We

now consider two different inputs (m
(1)
u , p(1)) and (m

(2)
u , p(2)) and consider the corre-

sponding solutions m
∗(1)
b and m

∗(2)
b . We abbreviate: m

(i)
u = m

(i)
u (α(i)(x, t), t), p̃(i) =

10
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Figure 2. Characteristics α(1)(t) and α(2)(t), starting at α(1)(0) and α(2)(0), respectively, cross at time T at

location α(T ).

p̃(i)(α(i)(x, t), t), Λ(i)(t) = Λ(α(i)(x, t), t), and k
(i)
on = kon(α(i)(x, t), t), for i = 1, 2. No-

tice that, since vεb depends on p̃(i), the characteristics will differ. We denote them by

α(1)(t) = α(1)(x, t) and α(2)(t) = α(2)(x, t) with anchor points α1
0 and α2

0, respectively.
Integrating both sides of the characteristic equation (12) with respect to t from 0 to t
and taking the difference we see that the anchor points are close for small times

|α(1)(0)− α(2)(0)| ≤ |vb
ε|
∫ t

0

∣∣∣p̃(1) − p̃(2)
∣∣∣ ds

≤ |vb
ε| t |p̃(1) − p̃(2)|L∞ . (15)

Now, we estimate the distance between two solutions m
∗(1)
b and m

∗(2)
b given m

(i)
u , p̃(i) ∈

L∞(D) for i = 1 and 2. The initial conditions m
(1)
b (x, 0) = m

(2)
b (x, 0) = b(x) is Lipschitz

continuous and bounded, and the two solutions are

m
∗(1)
b (x, t) = Λ(1)(t)b(α(1)(0)) +

∫ t

0
Λ(1)(t− s)k(1)

onm
(1)
u ds (16)

m
∗(2)
b (x, t) = Λ(2)(t)b(α(2)(0)) +

∫ t

0
Λ(2)(t− s)k(2)

onm
(2)
u ds (17)
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That is, we estimate |m∗(1)
b (x, t)−m∗(2)

b (x, t)| as,∣∣∣m∗(1)
b (x, t)−m∗(2)

b (x, t)
∣∣∣
L∞

≤
∣∣∣Λ(1)(t)b(α(1)(0))− Λ(2)(t)b(α(2)(0))

∣∣∣
L∞

+

∫ t

0

∣∣∣Λ(1)k(1)
onm

(1)
u − Λ(2)k(2)

onm
(2)
u

∣∣∣
L∞

ds

≤ |Λ(1)|∞|b(α(1)(0))− b(α(2)(0))|∞ + |b(α(2)(0)|∞|Λ(1)(t)− Λ(2)(t)|∞

+

∫ t

0
|Λ(1)(t− s)− Λ(2)(t− s)|∞|k(1)

onm
(1)
u |∞ + |Λ(2)|∞|k(1)

on − k(2)
on |∞|m(1)

u |∞

+|Λ(2)(t− s)k(2)
on |∞|m(1)

u −m(2)
u |∞ ds

≤ cLb|α(1)(0)− α(2)(0)|∞︸ ︷︷ ︸
I

+ c|Λ(1)(t)− Λ(2)(t)|∞︸ ︷︷ ︸
II

ct
(
|Λ(1) − Λ(2)|L∞(D) + |k(1)

on − k(2)
on |∞ + |m(1)

u −m(2)
u |∞

)
︸ ︷︷ ︸

III

Simplifying I: Substitution of estimate (15) into I we obtain,

∣∣∣α(1)(0)− α(2)(0)
∣∣∣ ≤ |vb

ε| t
∣∣∣p̃(1) − p̃(2)

∣∣∣
L∞

. (18)

Simplifying II: The term
∣∣Λ(1)(t)− Λ(2)(t)

∣∣ from II can be simplified as

∣∣∣Λ(1)(t)− Λ(2)(t)
∣∣∣
L∞

=

∣∣∣∣exp(−
∫ t

0
[koff +∇ · vb

ε(1)(α(1)(s))]ds)− exp(

∫ t

0
[koff +∇ · vb

ε(2)(α(2)(s))]ds)

∣∣∣∣
≤ ct

∣∣∣∇(vb
ε(1)(α(1)(s))− vb

ε(1)(α(1)(s)))
∣∣∣
L∞

,

≤ cεt|α(1) − α(2)|∞ (19)

since we know already that the exponents are bounded. The characteristics α(1) and
α(2) have a common point at (x, t), hence we can extend the estimate (15) for each
intermediate time 0 ≤ s ≤ t as

|α(1)(s)− α(2)(s)| ≤ |vb
ε| (t− s) |p̃(1) − p̃(2)|L∞ .

Hence

II = c
∣∣∣Λ(1)(t)− Λ(2)(t)

∣∣∣
L∞
| ≤ cεt2|p̃(1) − p̃(2)|L∞ . (20)

Simplifying III: Based on the estimates above, we can estimate the third term III as
follows

III ≤ ct
(
cεt

2|p̃(1) − p̃(2)|+ cLkont|p̃(1) − p̃(2)|+ c|m(1)
u −m(2)

u |
)
.

12
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Putting I, II, III together, we get for t ∈ [0, τ ], t small enough, that∣∣∣m∗(1)
b (x, t)−m∗(2)

b (x, t)
∣∣∣
L∞
≤ cεt

(∣∣∣p̃(1) − p̃(2)
∣∣∣
L∞

+
∣∣∣m(1)

u −m(2)
u

∣∣∣
L∞

)
. (21)

3.2. An estimate for mu

Next, we derive an expression for mu. We begin by considering the case where we are
given an mb ∈ X and p ∈ Z, and assume that m∗u satisfies the equation (1b), That is,

∂m∗u(x, t)

∂t
−Du∆m∗u(x, t) = −kon(p̃)m∗u(x, t) + koffmb(x, t). (22)

This is a linear parabolic equation and its solution can be written as ( [28])

m∗u(x, t) = exp(tDu∆)m∗u(x, 0). (23)

+

∫ t

0
exp((t− s)Du∆)[kon(p̃(x, s))m∗u(x, s) + koffmb(x, s)]ds

Again, we estimate the distance between two solutions m
∗(1)
u (x, t) and m

∗(2)
u (x, t), for

given m
(i)
b ∈ X and p(i) ∈ Z, and initial conditions m

(1)
u (x, 0) = m

(2)
u (x, 0) = u(x).

∣∣∣m∗(1)
u (x, t)−m∗(2)

u (x, t)
∣∣∣
L∞

=

|exp(tDu∆)u(x)− exp(tDu∆)u(x)

+

∫ t

0
exp((t− s)Du∆)(k(1)

onm
∗(1)
u + koffm

(1)
b − k

(2)
onm

∗(2)
u + koffm

(2)
b )ds

∣∣∣
≤
∫ t

0

∣∣∣exp((t− s)Du∆)(k(1)
onm

∗(1)
u + koffm

(1)
b − k

(2)
onm

∗(2)
u + koffm

(2)
b )
∣∣∣
L∞

ds.

The heat equation semigroup is a bounded linear operator on L∞(D) ( [28]), hence

| exp(tDu∆)f |L∞ ≤ c|f |L∞ , (24)

and we obtain∣∣∣m∗(1)
u (x, t)−m∗(2)

u (x, t)
∣∣∣
L∞

≤ c

∫ t

0
(c1|k(1)

on − k(2)
on |L∞ + c2|m∗(1)

u −m∗(2)
u |L∞ + c3koff |m

(1)
b −m

(2)
b |L∞)ds

≤ ctLkon |p̃(1) − p̃(2)|L∞︸ ︷︷ ︸
kon is Lipschitz w.r.t p̃

+ctkoff |m
(1)
b −m

(2)
b |L∞ + c

∫ t

0
|m∗(1)

u −m∗(2)
u |L∞ds.

13
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Gronwall’s Lemma [23] then implies∣∣∣m∗(1)
u (x, t)−m∗(2)

u (x, t)
∣∣∣
L∞
≤
(
ctLkon |p̃(1) − p̃(2)|L∞ + ctkoff |m

(1)
b −m

(2)
b |L∞

)
exp(ct).

(25)
Thus, we have a continuous mapping B defined by

B : X × Z −→ L∞(D)

(mb, p) 7−→ m∗u.

3.3. An estimate for p

We derive an expression for p using the equation (2). Here, we follow a similar method
to that used by Hillen et al. [6]. Now mu ∈ X and mb ∈ X are given, and p∗ denotes the
unique solution of

∂p∗(x, t, θ)

∂t
+sMT θ̂·∇xp∗(x, t, θ) = −λ(mb)p

∗(x, t, θ)+λ(mb)

∫ n−1

S
k(mb, θ, θ̃)p

∗(x, t, θ)dθ̃

(26)
This equation is a hyperbolic transport equation, and so we can use the method of
characteristics to determine an expression for p. For a given θ, we have the characteristic
equation

dx(s)

ds
= sMT θ.

The unique solution through the point (x, t) is given by

β(x, s) = x− sMT θ(t− s), β0 = x− sMT θt. (27)

Substituting the characteristic β(x, s) into equation (26) and writing in terms of the
material derivative we arrive at

dp∗(β(x, t), t, θ)

dt
+ λ(mb(β(x, t), t))p∗(β(t), t, θ) = λ(mb(β(x, t), t))

× k(mb(β(x, t), t), θ)p̃∗(β(x, t), t, θ).

(28)

We can solve the equation (28) by using an integrating factor,

Π(β(x, .), t) = exp(−
∫ t

0 λ(mb(β(x, s), s))ds).

Then the solution can be written as

p∗(β(t), t, θ) = Π(β(x, .)t)q(β(0), θ)

+

∫ t

0
Π(β(x, .), t− s)λ(mb(β(x, s), s))k(mb(β(x, s), s), θ)p̃∗(β(x, s), s)ds.

(29)

Using β(x, s) = x− sMT θ(t− s) our integrating factor is written as

14
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Π(x, t) = exp(−
∫ t

0 λ(mb(x− sMT θ(t− s), s))ds).

Then

p∗(x, t, θ) = Π(x, t)q(x− sMT θt, θ)+∫ t

0
Π(t− s)λ(mb(x− sMT θ(t− s), s))k(mb(x− sMT θ(t− s), s), θ)p̃(x− sMT θ(t− s), s)ds.

(30)

This equation describes a continuous map

C : L∞(D) −→ L∞((0, τ ], L∞(Ω)× L1(Sn−1))

mb 7−→ p∗,

Before obtaining a contraction, we estimate the differences between p∗(1) and p∗(2), and

between p̃∗(1) and p̃∗(2), for given m
(1)
b and m

(2)
b ∈ X. We denote λ(i) = λ(m

(i)
b ), k(i) =

k(m
(i)
b ), and Π(i) = exp(−

∫ t
0 λ(m

(i)
b )ds), for i = 1 and 2. First we observe that

|p∗(1) − p∗(2)|L∞(Ω)×L1(Sn−1) = |p̃∗(1) − p̃∗(2)|L∞(Ω).

Hence an estimate for p̃ implies a similar estimate for p. Estimating p̃ first we obtain,∣∣∣p̃∗(1) − p̃∗(2)
∣∣∣
L∞

≤
∫
V

[
|p0|L∞

∣∣∣Π(1) −Π(2)
∣∣∣
L∞

+

∫ t

0

∣∣∣Π(1)λ(1)k(1)p̃∗(1) −Π(2)λ(2)k(2)p̃∗(2)
∣∣∣
L∞

ds

]
dv

≤
∫
V

[
ct|m(1)

b −m
(2)
b |L∞ +

∫ t

0

[
c
∣∣∣Π(1) −Π(2)

∣∣∣
L∞

+ c|λ(1) − λ(2)|L∞ +c|k(1) − k(2)|L∞ + c|p̃∗(1) − p̃∗(2)|L∞
]
ds
]
dv

[by repeated insertion and subtraction and the use of bounds for |Π(i)|, |λ(i)|, |k(i)|.]

≤
∫
V

[
ct|m(1)

b −m
(2)
b |L∞ + ct2|m(1)

b −m
(2)
b |L∞ + ct|m(1)

b −m
(2)
b |L∞

+ct|m(1)
b −m

(2)
b |L∞ + c

∫ t

0
|p̃∗(1) − p̃∗(2)|L∞ds

]
dθ

[using Lipschitz continuity of λ and k]

≤ c1t|m(1)
b −m

(2)
b |L∞ + c2

∫ t

0
|p̃∗(1) − p̃∗(2)|L∞ds

[where
∫
V dv = |V | <∞ was added to each constant].

Now, Gronwall’s Lemma applies and

|p̃∗(1) − p̃∗(2)|L∞ ≤ ct|m(1)
b −m

(2)
b |L∞ exp(ct). (31)
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3.4. Defining a contraction mapping T

In this section, we define a contraction map T using the maps A, B, and C as follows:

T : X −→ X

mb 7−→ T(mb) = A(B(mb,C(mb)),C(mb)).

Theorem 3.3 Assume (A1). For τ > 0 small enough, the map T : X → X is a
continuous contraction and it has a unique fixed point in X.

Proof. For two functions m1
b ,m

2
b ∈ X we estimate the distance of T(m1

b) − T(m2
b). We

use the estimates of the individual operators, where we use (21) in the first inequality,
estimate (25) for the second inequality and estimate (31) in the third step. All norms
are supremum norms and 0 < t ≤ τ .∣∣∣Tm(1)

b −Tm
(2)
b

∣∣∣
L∞

≤ cεt
(
|C̃(m1

b)− C̃(m2
b)|

+|B(m1
b , C(m1

b))−B(m2
b , C(m2

b))|
)

≤ cεt
(
|C̃(m1

b)− C̃(m2
b)|

+
(
ctLkon|C̃(m1

b)− C̃(m2
b)|+ ctkoff |m1

b −m2
b |
)
ect
)

≤ cεte
ct|m1

b −m2
b |.

For t small enough, T is a contraction on X and it has a unique fixed point m∗b . �

This fixed point defines a mild solution (mb,mu, p) = (m∗b , B(m∗b , C(m∗b)), C(m∗b)),
which satisfy the equations in Definition 3.1. �

4. Numerical Simulations

We present numerical simulations of model (1a), (1b), and (2) in two dimensions. In
equation (1a), we set ε = 0, corresponding to the movement of motors along the mean
orientation of MTs, which we denote by µ. The simulations shown here are similar to those
described by White et al [35]. For a complete description of the numerical details, and for
more examples of numerical simulations, please refer to [35]. For equations (1a) and (1b),

we choose the function kon(p̃) = kmaxon
p̃

1+p̃ for the attachment rate of unbound motors

(i.e., motors bind to MTs in a density dependent way, where this binding saturates for
high numbers of MTs). Also, in equation (2), we choose the function λ(mb) = λmax

mb

1+mb

for the switching rate of MTs (i.e., MTs have a higher switching rate when more bound
motors are present, but this rate also saturates).

In equation (2), we use the Von Mises distribution [10, 20] for the redistribution kernel
k(θ, θ̃,mb) and so

k(θ, θ̃,mb) =
1

2πI0(κ(mb))
exp(κ(mb) cos(θ − µ)), (32)

where the function κ(mb) = Cmb. As described in detail in [34, 35], we call κ(mb) the
alignment function and C the motor activity parameter (the ability for a motor to cross-
link MTs). When the peak of the distribution is high (i.e., when the standard deviation

16
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Table 1. Model parameter values and sources for the full model.

parameter value meaning source

νbmax 0.8 µms−1 Speed of conventional kinesin in vitro [7, 26]
kmax
on high 10 s−1 Max attachment rate for

processive motors [33, 35]
koff low 0.1 s−1 Dissociation rate of processive motors [33, 35]
Du 0.2 µm2s−1 Diffusion constant for motors [35]
sMT high 0.12 µms−1 Treadmilling speed of

interphase MTs released from [24]
the centrosome of fibroblastic cells in vitro

λmax 40 s−1 Switching rate of MTs [35]
C low 0.1 Motor activity parameter [35]
C moderate 10 Motor activity parameter This paper

is small), then the value of the alignment function is high. Thus, if many bound motors
are present, or if the motor activity C is high, the probability for reorientation close the
mean MT orientation µ is high. Alternatively, if the peak of the distribution is low, then
the value of the alignment function is low. In this case, there are few motors, or the
motor activity C is weak, and so the probability for reorientation close the mean MT
orientation µ is low. When C = 0, or there are no motors present, the distribution k is
uniform, and all angles of reorientation are equally likely.

The choice in the reorientation kernel described by equation (32) allows for MTs to
reorient to any angle, as stated in the assumptions (A1) in Section 3. However, this prob-
ability is centered around the mean MT orientation µ, and so MTs (having orientations
close to the mean) tend to align towards the mean MT orientation when they undergo
reorientation. In particular, the use of such a kernel means that MTs like to cluster to-
gether (in the presence of motors). Such a property has been observed experimentally.
All parameters used in the simulation of equations (1a), (1b), and (2) are summarized
in Table 1.

As an example, we set the motor density to be low, the treadmilling speed sMT to be
high, and show results of MT patterning under the influence of kinesin-1-type motors of
varying (low and high) motor activity C. Kinesin-1 is a fast, processive motor [7] and
so the maximum speed of the motor νbmax is high, the maximum attachment rate of
unbound motors kmaxon is high, and the detachment rate of bound motors koff is low.
Also, kinesin-1 is a plus-end directed motor and so it moves towards the plus end of a
MT. All parameters mentioned above are outlined in Table 1.

In Figure 1, we show that at high treadmilling speed, and for low motor densities, MTs
form vortices when the activity of the motor is low (C is a low value). Here, we define
vortex formation as a vector field that clearly shows rotation. In Figure 2, we show that
plus-end asters instead of vortices form when motor activity C is increased from low to
moderate. We note that motors (both bound and unbound) are primarily located at the
centers of either the vortices or the asters.

These results are consistent with the results by Surrey et al. [26]. In their experiments,
motors form MTs into vortices at low motor density and plus-end focused asters at higher
motor densities. Our experiments are slightly different, since we are increasing the motor
activity parameter C and not the motor density. However, a change in C has the same
alignment affect as a change in the bound motor density (since the alignment function
κ(mb) = Cmb).
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5. Conclusion

There is a trend in Mathematical Biology to avoid complicated existence and uniqueness
proofs, and instead focus on numerical simulations. Our paper is a reminder that devel-
oping existence and uniqueness results is not always an academic exercise, but may lead
to important insights. Here we found that the original model, as formulated in [33, 35],
needed to be extended to obtain a mathematically well-defined problem. The key as-
sumption is the local smoothing of the motor velocity vεb in (5). In the analysis, we used
an index cε to keep track of the mollifier parameter ε > 0. The critical estimate is (19),
where we estimate the divergence of vb

ε. In this estimate, the constant cε might diverge
to ∞ for ε→ 0. Hence the existence time τ must be chosen smaller for smaller values of
ε > 0. After careful study of other constructions, we are convinced that the mollification
(5) is necessary to use such a fixed-point argument. In fact, Golse et al. [5] showed that
by integration of a transport equation, one gains about 1/2-order of regularity. Thus,
if p ∈ L2, then vb ∈ W 1/2,2. However, in the first equation we need a derivative of vb

which has regularity less than L2. Whether existence can be proved without the use of a
mollifier remains an open question.

Without embarking on a full existence theory, it is likely that we would not have dis-
covered that this smoothing step is needed. Also, the smoothing of the motor velocity
adds biological realism, since mb and p describe densities and not individual motors or
individual MTs, hence some average behavior is plausible. A numerical method auto-
matically adds some spatial averaging. Hence for ε small enough, the original and the
modified model have the same numerical output.

Simulations of the model (with ε = 0) yield results similar to in vitro experiments [19].
In particular, simulations of MT dynamics in the presence of motors with properties
similar to kinesin-1 show that MTs form vortices at low motor activity and asters at
higher motor activity.

It would be interesting to extend the result to other domains. If we consider bounded
domains, we need to make sure to define boundary conditions only on the inward-pointing
part of the boundary. Since the characteristic velocity vb

ε varies over space, it can happen
that the inward and outward pointing part of a boundary form non-connected subsets of
the boundary. It is unclear how to properly define boundary conditions in such a case. In
addition, the transport equation would need some form of reflective boundary conditions,
which are quite cumbersome to deal with. In the numerical simulations presented in this
paper, we use periodic boundary conditions. However, in the simplified model of White et
al [34], no-flux boundary conditions were implemented by using a bounce-back algorithm,
where MTs bounce back inside one grid point and reorient when they have reached the
boundary. This method is explained in detail in [33, 34]. The theory can be extended
to D = Rn, where we then need to use a weighted space and the appropriate solution
semigroups on those spaces. We leave this idea for future work.

An interesting feature of our model is that it can be extended to incorporate more
than one motor type, by simply adding two more differential equations for a second
type of bound and unbound motors. The authors examine this case in [35] and find
that, by using motor properties similar to properties of mitotic motors (motors that
aid in mitosis), arrays of anti-parallel MTs form. This result is consistent with in vivo
organization, since MTs form anti-parallel bundles (called the mitotic spindle) during
cell division. This model is the first mathematical model to predict the mitotic spindle
[35].
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