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abstract
Background. Classical expressions for the tumor control probability (TCP) are based on models for the survival fraction of 
cancer cells after radiation treatment. We focus on the derivation of expressions for TCP from dynamic cell population 
models. In particular, we derive a TCP formula for a generalized cell population model that includes the cell cycle by 
considering a compartment of actively proliferating cells and a compartment of quiescent cells, with the quiescent cells 
being less sensitive to radiation than the actively proliferating cells. Methods. We generalize previously derived TCP formu-
las of Zaider and minerbo and of Dawson and Hillen to derive a TCP formula from our cell population model. We then 
use six prostate cancer treatment protocols as a case study to show how our TCP formula works and how the cell cycle 
affects the tumor treatment. Results. The TCP formulas of Zaider-minerbo and of Dawson-Hillen are special cases of the 
TCP formula presented here. The former one represents the case with no quiescent cells while the latter one assumes that 
all newly born cells enter a quiescent cell phase before becoming active. From our case study, we observe that inclusion of 
the cell cycle lowers the TCP. Conclusion. The cell cycle can be understood as the sequestration of cells in the quiescent 
compartment, where they are less sensitive to radiation. We suggest that our model can be used in combination with syn-
chronization methods to optimize treatment timing.

In this paper, we concern ourselves with the tumor 
control probability (TCP), defined as the probability 
that no clonogenic cells survive the radiation treat-
ment [1]. expressions for TCP can be derived in a 
number of different ways. Here, we distinguish 
between expressions for TCP obtained from statisti-
cal models of cell survival and expressions for TCP 
obtained from stochastic cell population models. We 
briefly review the former, and focus on the latter.

expressions for TCP in common use are based 
on either Poissonian or binomial statistics, in combi-
nation with models of cell survival. A strength of 
these models clearly lies in their simplicity. The mod-
els are used widely, and contribute to the analysis of 
radiobiological data in the lab and the development 
of clinical treatment schedules. At the same time, 
there are limitations. In particular, the interaction of 
the treatment schedules with cancer cell dynamics 
(cell repair, cell proliferation, sensitivity to radiation, 
etc.) cannot be represented in full detail.

We argue that cell population models, that is, mod-
els that keep track of the number of clonogenic cells 
using differential equations, can be used to derive new 
forms of the TCP that will allow a systematic investi-
gation of different treatment schedules and their inter-
actions with cancer cell dynamics. For example, with 
cell population models, there is a choice in the way 
that proliferation is modelled (exponential, logistic, 
Gompertzian, etc.). Similarly, differential effects of 
radiation can be modelled by dividing the cell popula-
tion into different compartments [2,3]. In the  
context of the cell cycle, it makes sense to consider a 
compartment with actively proliferating cells and 
another with quiescent cells, since it is known that 
actively proliferating cells are more sensitive to radia-
tion than quiescent cells. In the context of a solid 
tumor, it might make sense to consider a compart-
ment of hypoxic cells and another compartment with 
non-hypoxic cells, since it is known that hypoxic cells 
are less sensitive to radiation than non-hypoxic cells.
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The use of differential equation models is appro-
priate for large numbers of cells. However, if the 
radiation treatment is successful, then one expects a 
small number of cells after some time. In that case, 
the differential equation model is no longer valid. A 
more careful modelling approach should include sto-
chastic birth and death events, as modelled through 
a stochastic birth-death process.

Our goal is to present a hierarchical view of expres-
sions for TCP, with increasing sophistication and gen-
erality. We begin with TCP curves obtained from cell 
survival models, and end with a TCP curve obtained 
by considering a stochastic birth-death process for a 
cell population model that includes the effects of the 
cell cycle. We highlight the connections between these 
models by showing that special cases of the more com-
plex models reduce to previously known models.

TCP curves from cell survival models

A common observation is that the number of cells 
that survive radiation treatment can be described by 
a Poisson distribution, which leads to,

 TCP eP
n0S D − ( ),  (1)

where n0 is the initial number of cells, and S(D) 
denotes the fraction of cells that survives the treat-
ment as a function of radiotherapeutic dose D. This 
formula is valid provided that n0 is large, that cell 
survival is a rare event, and that death of each cell is 
stochastically independent of the other cells.

If n0 is not large, and survival is not a rare event, 
then the number of cells that survive radiation treat-
ment follows a binomial distribution. Then the TCP 
becomes

 TCP S DB
n0 (1 ( )) . (2)

Letting n0→ ∞ and S(D) → 0 such that 0n0S(D)∞, 
TCPB→TCPP, that is, the binomial TCP converges to 
the Poissonian TCP, as expected.

To complete either the Poissonian or the binomial 
expression for TCP, one needs a model for the survival 
fraction S(D). There are many theoretical models for 
cell survival. We will not review these models here, but 
just mention some major classes of cell survival mod-
els, namely target-theory models [4], the linear-qua-
dratic model [5], repair-misrepair models [6], and the 
lethal-potentially lethal models [7]. Here, we focus on 
the most commonly used model for cell survival, 
namely the linear-quadratic model [5],

 S D e ,aD D( ) ( 2 ) b  (3)

where a and β are the cellular radiosensitivities that 
vary with the type of tissue being radiated. In clinical 
practice, total dose D is given in n fractions, each of 
dose d. equation 3 then becomes

 
S D n d e e ed d

n
n d d

D
d

( ( , )) .( 2 ) ( 2 )
1

/   


−
−











a b a b
a

a b−

  
                                                                 (4)

The expression 
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has been used in clinical practice as Biological Effective 
Dose, or as Extrapolated Response Dose to compare dif-
ferent treatment strategies (e.g., Dale [8]). Although 
applied with some success, these expressions for cell 
survival have important limitations. In particular, they 
do not take into account the temporal protocol of dose 
delivery. That is, a total dose of say 70 Gy in 35 frac-
tions spread out over seven weeks gives the same cell 
survival and tumor control probability as the same frac-
tionation spread out over 14 weeks or 21 weeks, etc. By 
ignoring time as an independent variable, the slow 
repair mechanisms that restore cells between fractions 
are ignored, as well as cell proliferation during treat-
ment. Proliferation plays a role especially when the 
treatment is delivered over a time interval that is long 
relative to the tumor doubling time. Both of these lim-
itations can be addressed with modified expressions for 
cell survival and Biological effective Dose (BED).

To incorporate the effect of slow repair  mechanisms, 
the following expression for cell survival is commonly 
used,

 S D e D GD( ) ,( 2 ) − a b   (6)

where G is the generalized Lea-Catcheside dose- 
protraction factor [9,10],
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Ḋ(t) is the dose rate, D(t) is the cumulative dose, and 
1/g represents the average life time of a double-
stranded DNA break (g  0 implies that repair mech-
anisms are at work).

To incorporate the effect of cell proliferation, cell 
survival is modified as follows [11, 12]:

 S D e eD D Tp
t tk

( ) ,( 2 )

2
( )

 −
−

a b
ln

  (8)

where TP is the tumor doubling time, and tk is the time 
after treatment (t0) at which proliferation begins. If we 
use equation 5 with equation 6 or 8 we obtain a BeD 
formula which depends on time. The time-delay term has 
been introduced to describe the effect of accelerated 
tumor regrowth after treatment has started [13–16]. This 
last expression can be derived readily from a cell popula-
tion model, as we review below.

Tucker et al. [17] were among the first to  question 
the appropriateness of the Poissonian description of 
the TCP. They used monte-Carlo simulations to show 
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that the Poissonian distribution of surviving cancer 
cells underestimates the simulated numbers up to 
15%. yakovlev [18] and later Hanin [19, 20], based on 
the work of Kendal [21], described the monte-Carlo 
simulation through a stochastic birth-death process 
and they showed analytically that the Poisson distribu-
tion may be inappropriate in certain situations. Addi-
tionally, Hanin found that the birth-death process can 
also be understood as a stochastic branching process. 
In this interpretation, the cell survival distribution fol-
lows a generalized negative binomial distribution. He 
also gives estimates on the convergence to the Poisso-
nian distribution for large cell numbers. recently, 
Stavrev et al. [22] used these non-Poissonian models 
to fit in vitro data for radiation damage of tumor cells. 
We will review the non-Poissonian model of Zaider and 
minerbo [23] in the following section.

TCP from cell population models

If we let n(t) denote the number of cancer cells at 
time t, then one of the simplest cell population mod-
els is given by the differential equation

 
dn
dt

b d h t n − −[ ]( ) ,
 
 (9)

where b and d are per-capita rate constants represent-
ing birth and death, respectively, and h(t) is known as 
a hazard function, representing death of the cells due 
to radiation. The hazard function depends on cumula-
tive dose, the dose rate, as the tissue is being radiated. 
Without radiation (setting h(t)0), the cell population 
exhibits exponential growth if bd and exponential 
decay if bd. By choosing the hazard function to be

 h t D t D t( ) 2 ( ) ( ), a b( )    (10)

the solution of the differential equation is

 n t n e eD D Tp
t tk

( ) ,0
( 2 )

2
( )

 −
−

a b
ln

  (11)

where

  

ln2
T

b d
p

 −
. 

The surviving fraction of cells 

               
S D

n t
n

( )
( )

0


 

is the same as the modified linear-quadratic equation 
shown in equation 8.

It is important to notice that cancer cell kill due 
to radiation is in fact a stochastic process. The use of 
differential equation models is appropriate for large 

numbers of cells. However, if the radiation treatment 
is successful, then one expects a small number of cells 
after some time. In that case, the differential equation 
model is no longer valid. A more careful modelling 
approach should include stochastic birth and death 
events, as modelled through a stochastic birth-death 
process. Then the differential equation model arises as 
mean field equations for the expected cell number.

In [23], Zaider and minerbo did exactly that for 
differential equation 9, and derived a new expression 
for the TCP, namely
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is the surviving fraction of cells due to radiation only 
(assuming bd0). Noting that the surviving fraction is 
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we can rewrite TCP tZM( )  as
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where n(t) is the solution of the original deterministic 
population growth model (equation 9). Note that 
Zaider and minerbo’s TCP formula is time dependent. 
In particular, it can accommodate any fractionation 
schedule, via the dose rate D

.
(t) in the hazard function 

h(t). The procedure to compute the TCP then is straight 
for ward (summarized in steps 6–8 in the next section).

When bd0, that is, when cell death is due to 
radiation only, then Zaider and minerbo’s TCP for-
mula TCPZM reduces to the binomial TCP formula, 
TCPB in equation 2.

The derivation of TCP formulas via birth-death pro-
cesses, as pioneered by Zaider and minerbo, also provides 
a natural way to take into account various factors that 
influence tumor survival. For example, Zaider and 
 minerbo’s approach can be extended to more sophisti-
cated cell population models. Of interest would be to sub-
stitute exponential growth dynamics with Gompertzian 
or logistic growth, for example, and investigate how dif-
ferent growth laws affect the TCP. In the next section, we 
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set up a population model that incorporates the cell cycle, 
and outline the procedure to obtain a TCP formula.

Methods and model setup

Procedure to obtain the TCP from a cell  
population model

We briefly outline the mathematical steps that are 
needed to derive a TCP formula from a cell  population 
model (steps 1–5) and then to compute the TCP 
formula for a given treatment schedule and cancer 
type (steps 6–8): 

 Step 1: Begin with a deterministic cell popula-
tion model, with appropriate proliferation dynam-
ics and a suitable hazard function.
 Step 2: Set up the corresponding stochastic 
birth-death process for pi(t), the probability that 
i clonogens are alive at time t, and derive the mas-
ter equation for pi(t), for i=0,1,..., ∞.
 Step 3: Verify that the expected values satisfy the 
population model (mean field equations) from 
step 1.
Step 4: Solve for the pi(t): 
(a)  Introduce a generating function, and con-

struct the hyperbolic partial differential equa-
tion for the generating function.

(b)  Use the method of characteristics to solve the 
hyperbolic equation for the generating function.

 Step 5: extract the TCP from the generating 
function, namely TCP(t)p0(t).
 Step 6: Identify the radiosensitivity parameters 
for the given tumor, and set up the dose rate func-
tion D(t) in the hazard function h(t) for the given 
fractionation schedule.
 Step 7: Solve the deterministic population model 
(mean field equations) from step 1 (numerically, 
if necessary).
 Step 8: Substitute the solution from the previous 
step into the TCP formula.

The computation of the TCP via steps 6–8 deserves 
some special attention. In the context of the cell pop-
ulation model discussed in the previous  section, the 

formula for the TCP only depends on the hazard func-
tion h(t) in equation 10 and on the solution of the 
mean field equation for n(t) in equation 11. This is a 
surprising result, since the birth-death process 
describes the time evolution of probabilities of a sto-
chastic process. However, if we are only interested in 
the TCP, then it is sufficient to know the mean field, 
i.e., the expectation of Pi. That is, a deterministic model 
suffices to compute the TCP. This observation can be 
generalized for more complex models.

Cell population model with cell cycle effects

Dawson and Hillen [24] extended the model of Zaider 
and minerbo to include cell cycle dynamics. The basic 
idea is that a typical tumor consists of cells which are 
actively proliferating (cells in the G1, S, G2, or m 
phase) and cells which are quiescent (cells in the 
G0-phase). Since actively proliferating cells are more 
sensitive to radiation than quiescent cells, one must 
keep track of the two subpopulations to make predic-
tions about the total cell population (Figure 1).

In [24], it was assumed that all newly generated 
daughter cells directly enter the quiescent compart-
ment. Here, we loosen this assumption and allow 
newly generated cells to become either active or  
quiescent. With this formulation, we can show that 
the Zaider and minerbo model discussed above and 
the Dawson-Hillen model are special cases of the 
more general model introduced here.

Let a(t) denote the population of active cells and 
q(t) the population of quiescent cells. The compart-
mental population model is

 

d
dt

a fa a q t aa 2 ( ) ,m m g− − Γ
 

(14)

 

d
dt

q f a q t qq 2 (1 ) ( ) ,m g− − − Γ
  

(15)

where the parameter m0 denotes a constant per-capita 
birth rate. Note that the population of active cells divide 
at a rate of ma, giving rise to 2ma daughter cells, a frac-
tion 0ƒ1 of which remains in the active compart-
ment (the first term in equation 14), and the rest of 
which moves into the quiescent compartment (the first 
term in equation 15). With birth, there is the loss of 
the mother cells, represented by the term ma in equa-
tion 14. The parameter g0 denotes the rate at which 
quiescent cells become active. This model does not 
include natural death of cells, since the treatment time 
is assumed to be short compared to the natural life 
expectancy of the cells. In addition, Γa t( )  and Γq t( )  
are the hazard functions due to radiation treatment for 
active and quiescent cells, respectively, given by

Γa a at D t D t D t D t( ) ( ) 2 ( )( ( ) ( )), a b w  − −   (16)

Figure 1. A schematic of cell cycle dynamics. Cells in the G1, S, 
G2, and m phases are grouped in one compartment, and labelled 
active. Cells in the G0 phase are grouped in a second compartment, 
and labelled quiescent.
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Γq q qt D t D t D t D t( ) ( ) 2 ( )( ( ) ( )), a b w  − −    (17)

as proposed by Dawson and Hillen in [24]. The param-
eters aa, aq, ba and bq are the radiosensitivities for active 
and quiescent cells, respectively. The parameter w rep-
resents the time interval over which single-hit events 
can interact to result in cell fatality, and its value is the 
mean repair time of a single-hit event. In the limit as 
w→∞, the hazard functions have the same form as 
equation 10. See [24] for more information on the 
physical motivation for the these hazard functions.

In the results section, we carry out the procedure 
described above to obtain a TCP formula for this 
model.

Case study: Treatment of prostate vancer

To illustrate the use of these TCP models, we consider 
the treatment of prostate cancer. We compute the 
time-dependent TCP for two extremal cases, namely 
the Zaider and minerbo model (ƒ1) and the  
Dawson and Hillen model (ƒ0). We use parameter 
values from the literature as outlined in Table I.

We compute the TCP for three typical radiation 
treatment schedules (denoted B, C, e) and their cor-
responding hyperfractionation schemes (denoted b, c, 
e, respectively). Here, hyperfractionation refers to the 
corresponding treatment schedule that gives half the 
radiation twice per day. For all schedules, we consider 
five treatment days per week (monday through Fri-
day; weekends off). The schedules are summarized in 
the first four rows of Table II (the notation of these 
schedules is based on an earlier work [25]).

results

Derivation of the TCP for the population model with 
cell cycle effects

We follow steps 1–5 as outlined in the methods sec-
tion. The detailed derivation is available as online 
supplemental material. We find that the TCP is given 
by the following expression:
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When ƒ1, we recover the TCP formula of Zaider 
and minerbo [23], as stated in equation 11. Simi-
larly, when ƒ0, we recover the TCP formula of 
Dawson and Hillen [24], namely
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Case study: TCP calculations for the treatment  
of prostate cancer

To illustrate the use of the TCP formula summa-
rized in equations 18 and 19, we follow steps 6–8 as  
outlined in the methods section to compute the 
TCP as functions of time and cumulative dose for 

Table I. Parameter values and references.

TCPZM TCPDH Value Used Unit reference 

n(0) a(0)q(0) 106 cells Villasana and  
radunskaya [26] 

b m 0.0655 1/day Swanson et al [27] 
g 0.0476 1/day Basse et al [28] 

a aa 0.145 Gy1 Carlson et al [29] 
aq 0.159 Gy1 Carlson et al [29] 

2β 2βa 0.070646 Gy2 Carlson et al [29] 
2βq 0 Assumption

ω∞  w 57.04 10 min Carlson et al [29] 

Table II. Computed TCP values for six treatment schedules. TCPZM 
is computed with equation 12, and TCPDH with equations 20 and 
21. Values for the model parameters are as listed in Table I.

Protocol B b C c e e 

dose/fraction (Gy)  2  1  3 1.5  4  2 
times/day once twice once twice once twice 
treatment length  
  (days) 

50 50 32 32 24 24 

total dose (Gy) 72 72 72 72 72  72 
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Figure 2. TCP calculations for the Zaider-minerbo model (equation 12) and the Dawson-Hillen model (equations 20 and 21), using the 
parameter values specified in Table I, for each of the six treatment schedules specified in Table II. The top row shows TCPZM (left) and 
TCPDH (right) as functions of time. Note the different time scales. In both figures, the curves (ordered from left to right) correspond to 
treatment schedules e, e, C, c, B, and b, respectively. The bottom row shows the TCPZM (left) and TCPDH (right) as functions of dose. 
Note the different dose scales. For TCPZM, the curves (ordered from left to right) correspond to treatment schedules ee, Cc, and Bb, 
respectively. For TCPDH, the ordering corresponds to treatment schedules B, b, c, C, e, and e, respectively.
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the two extremal cases ƒ1, which recovers the 
TCP formula of Zaider and minerbo (TCPZM in 
equation 12), and ƒ0, which recovers the TCP 
formula for the  Dawson-Hillen model (TCPZM in 
equations 20 and 21). We use parameters relevant 
to prostate cancer (Table I), and compute TCPZM 
and TCPDH for the six different treatment schedules 
specified in Table II. Calculations are continued well 
beyond the end of the treatment, until each TCP is 
approximately one (treatment success). To solve the 
underlying population equation, we use an adaptive 
time step method, where the time steps range between 
0.01 seconds during treatment and 30 minutes on 
weekends.

The results of the computations are shown in Fig-
ure 2. The first row shows the TCP as function of 
time and the second row the TCP as function of 
cumulative dose. The curves are sigmoidal, as is typ-
ical for TCP curves. The staircase structure in the 
time-dependent TCP curves shown in the first row 
of Figure 2 reflects the treatment schedule, with each 
nearly vertical segment representing a radiation 
event, and each nearly horizontal segment represent-
ing time off between radiation events (the longer 
horizontal segments represent the weekends). As 
expected, curves corresponding to the hyperfraction-
ated schedules have a finer staircase structure since 
radiation is given twice per day.

We observe that the TCPZM curves exhibit a very 
steep transition from treatment failure (TCP0) to 
treatment success (TCP1); they resemble jump 
functions. This is related to the relatively large number 
of initial cancer cells of 106. Also, hyperfractionated 
and standard treatment schedules are indistinguish-
able. In contrast, the TCPDH curves are less steep and 
are shifted to the right relative to the TCPZM curves. 
This is due to the fact that, with our choice of param-
eters, the actively proliferating cells in the Dawson-
Hillen model are as sensitive to radiation as all the 
cells in the Zaider-minerbo model, while the quies-
cent cells are less sensitive. essentially, the quiescent 
cells are sequestered during the initial treatment 
bursts. To kill those cells as well, more radiation effort 
is needed. As before, the hyperfractionated and stan-
dard treatment schedules are indistinguishable.

If we compute the TCP at the end of treatment 
(50 days for schedules B and b, 32 days for C and 
c, and 24 days for e and e), then the TCPZM equals 
1 and the TCPDH equals 0 for all six treatment 
schedules. Thus, the inclusion of a quiescent com-
partment can have a drastic effect on the estimate 
of treatment success. This can also be seen in the 
second row of Figure 2, where the TCP is shown as 
function of cumulative dose D. These curves can be 
used to determine the D50 and corresponding g50 
values, defined as

TCP D D
dTCP

dD D

( )
1
2

, . 2250 50

50

 g 



 ( )

The D50 value represents the cumulative dose at 
which the TCP is exactly half. The g50-value is a mea-
sure of the sensitivity of the TCP value if dose D is 
varied close to D50. The D50 values are obtained from 
the intersection of the dashed line TCP1/2 and the 
TCP curves. For TCPZM, the D50 values are around 
31 Gy; for TCPDH, they are around 100 Gy. We 
emphasize that the parameters were chosen to make 
qualitative rather than quantitative observations about 
the effect of the cell cycle.

Discussion
In this paper, we have presented a hierarchy of TCP 
formulas, with increasing complexity. We have shown 
that TCP formulas can be built from detailed cell 
population models. In particular, we have presented 
a new cell cycle model, and derived a TCP formula 
that bridges the gap between the TCP formula of 
Zaider and minerbo and the TCP formula of  Dawson 
and Hillen.

The cell cycle effect can be understood as the 
sequestration of cells in the quiescent compartment, 
where they are less sensitive to radiation. Therefore, 
more radiation is needed to eradicate the tumor when 
the cell cycle effect is significant, that is, when cells 
spend a significant amount of time in the quiescent 
compartment. Interestingly, we have found with both 
models, the difference between TCP curves obtained 
with standard and hyperfractionated schedules is mini-
mal. However, we have not taken early or late responses 
of healthy tissue into account. It is commonly accepted 
that a hyperfractionated treatment schedule reduces late 
side effects, and therefore is beneficial for the patient.

We emphasize again that our results and conclu-
sions are qualitative. The TCP formulas can be used 
to compare treatment schedules. We find that when 
no cell cycle is taken into account, the D50 values for 
the six treatments investigated here are relatively close. 
When the cell cycle is included, as in TCPDH, the D50 
values cover a range of [90,105] . That is, the precise 
schedule of the treatment appears to matter less when 
cell cycle effects are not taken into account. For more 
quantitative results, careful parameterization of the 
model is needed, for example as was done by Stravrev 
and Stravreva for the Poissonian TCP and the Zaider-
minerbo TCP [22,30–32]. We expect that quantitative 
results will depend on the time scales at which mitosis 
and activation occur, relative to the time scale on 
which radiation treatments are applied.

The TCP model based on the cell cycle has the 
advantage that it can be coupled to synchronization 
methods. It is known that certain chemotherapy 
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agents are able to synchronize the cell cycle phases 
of tumor cells (see [33] and references therein). If all 
cells are known to be in the same phase, then treat-
ment can be optimized when the cells are radiated 
during the phase of the cell cycle in which they are 
most sensitive to the effects of radiation.

Note that we employ a very simple model for the 
cell cycle. more sophisticated cell cycle models exist 
in the literature. Such models include a continuous 
“age” variable for the cell, as well as important  
biochemical control pathways and checkpoints [33–
35]. recently, maler and Lutscher [36] designed a 
stochastic branching process which includes realistic 
cell-cycle time distributions. For large tumors (106 
cells and up), their TCP formula yields predictions 
that are the same as the predictions from the 
 Dawson-Hillen model. For smaller tumors, their pre-
diction is more optimistic. An inclusion of all details 
in any one TCP model would be unfeasible.

We note that steps 1–5 to derive a TCP formula 
from a cell population model, as outlined in the 
methods section, only apply to models with linear 
birth and death rates, as we did in this paper. Other 
approaches, currently under investigation, are needed 
when non-linear birth and death rates are used, for 
example when cell proliferation is assumed to be 
logistic or governed by Gompertz’ growth instead of 
exponential. TCP formulas from cell survival models 
when cell proliferation is modelled with the use of 
non-linear growth rates have been investigated by 
Usher [37] and mcAneney and O’rourke [38].

In this paper, we have ignored an investigation of 
the expected complications of the normal tissue sur-
rounding tumors. While this has been done for simple 
TCP models, for example by Usher [37], an optimi-
zation of more sophisticated TCP models with the 
Normal Tissue Complication Probability constraint 
[31] is currently under investigation [39].

Declaration of interest: The authors report no 
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Supplemental material

This material accompanies “From cell population 
models to tumour control probability: Including cell 
cycle effects” by T. Hillen, G. de Vries, J. Gong, and 
C. Finlay.

Here, we present the detailed derivation of the 
TCP formula shown in equations 18 and 19. 

We begin with the following population model 
with cell cycle effects in equations 14 and 15:

 

d
dt

a fa a q t aa 2 ( ) ,m m g− − Γ
 

(14)

 

d
dt

q f a q t qq 2 (1 ) ( ) ,m g− − − Γ
 

(15)

where a(t) denotes the population of active cells and 
q(t) the population of quiescent cells. The parameter 
m  0 denotes a constant per-capita birth rate, 0ƒ1 
is the fraction of newly born daughters remaining in 
the active compartment, g  0 denotes the rate at 
which quiescent cells become active, and a(t) and 
q(t) are the hazard functions due to radiation 
treatment for active and quiescent cells (shown in 
equations 16–17), respectively.

We follow steps 1–5 as outlined in the methods 
section to derive the TCP formula.

 Step 1: To be able to formulate a birth-death process 
which corresponds to equation 14–15, we need to 
re-arrange the first two terms in equation 14, and 
rewrite equation 14–15 as follows:

 

d
dt

a fa f a q t aa m m g− − −(1 ) ( ) ,
 

(A.1)

d
dt

q f a q t qq 2 (1 ) ( ) . 2m g− − − Γ ( )A
        

(A.2)

The proliferation terms in equations 14–15 can be 
understood as a loss term ma in equation 14 for 
mother cells which undergo mitosis and two gain 
terms 2mƒa in equation 14 and 2m(1–ƒ)a in equa-
tion 15 of new daughter cells which choose active or 
quiescent compartment, respectively. The birth terms 
in (the equivalent) system equations A.1–A.2 allow 
a different interpretation: Here a mother cell is only 
discarded from the active compartment, if it switches 
to the quiescent state, expressed through m(1–ƒ)a 
in equation A.1 and one component of m(1–ƒ)a in 
equation A.2. The additional daughter cell has the 
choice between active and quiescent compartment, 
which is modelled through mƒa in equation A.1 and 
m(1–ƒ)a in equation A.2.

 Step 2: Let Pi(t) and Qj(t) denote the probabilities 
that i active cancer cells and j quiescent cells are 
present at time t. For convenience, we assume that 

Pi(t)0, Qj(t)0, for i, j  0. We assume that initially 
we have active a0 cells and q0 quiescent cells such 
that

 
P P i aa i0 0(0) 1, (0) 0 ,  for  (A.3)

 
Q Q j qq j0 0(0) 1, (0) 0 .  for  (A.4)

The master equations describing the dynamics of 
these probabilities are

dP t
dt

f i P f i P

jQ P

i
a i i

j

j i

( )
( (1 ) )( 1) ( 1)

(

1 1

0

1

   




m m

g m

− −

−

+ −

∞

−∑


((1 ) )

0

−

− −
∞

∑

f iP

fiP jQ P

a i

i

j

j i







m g ,

(A.5)

dQ t
dt

j Q f iPQ

jQ

j
q j

i

i j

q j

( )
( )( 1) (1 )

( ) (1

1

0

2   





g m

g m

Γ

Γ

+

∞

−−

− − −

∑
ff iPQ

i

i j) .
0

∞

∑
  

(A.6)

Step 3: We can verify by direct computation that the 
expected values

 

a t iP t q t jQ t
i

i

j

j( ) ( ), ( ) ( )
0 0

 
 

∞ ∞

∑ ∑ ,

 
(A.7)

satisfy equations A.1 and A.2. Hence equations 
A.1–A.2 is the system of mean field equations for the 
above birth-death process.

 Step 4(a): The birth-death process in equations 
A.5–A.6 can be solved using the following generating 
functions:

 V s t s P t W s t s Q t
i

i
i

j

j
j( , ) ( ), ( , ) ( ).

0 0

 
 

∞ ∞

∑ ∑  (A.8)

multiplying equations A.5 by si and A.6 by sj and 
summing, we obtain the following system of hyper-
bolic partial differential equations for V and W:

∂
∂

∂
∂

− − −

− −

V
t

V
s

s f t fs

V q t s

a 



( 1)( (1 ) ( ) )

( )( 1) 0,

m m

g

Γ

   (A.9)

 
∂
∂

∂
∂

−

− − −

W
t

W
s

t s

W f a t s

q 



( ( ))( 1)

(1 ) ( )( 1) 0,2

g

m

Γ
 (A.10)

with initial conditions

 V s s W s sa q( ,0) , ( ,0) .0 0   (A.11)
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Since the right-hand side depends on the full 
characteristic path s(z), we need to replace s(z) 
through the end point s(t). To do this, we observe 
from equation A.18 that

 

s
t

s t
b y dy

z
s z

b y dy

a
t

a

a
z

a

0

0

0

1
1

( )
1 ( )

( )

1
1

( )
1 ( )

( )
.









−

−

−

−

∫

∫

Λ Λ

Λ Λ
 

(A.20)

Hence

 

s z
z

t
s t

b y dy

a

a

z

t

a

( ) 1
( )

( )
1 ( )

( )
.− −

− ∫




Λ
Λ Λ

 

(A.21)

Using this expression in equation A.19, we get an 
explicit solution for V, namely

 

V s t
t
s

b y dy

q z
z

a
t

a

a

t
a

( , ) 1
1

( )
1

( )

( )
(

0

0

0





−

−

















−

∫

∫

Λ Λ

Λ
exp g ))

( )
1

( )
.

Λ Λa

z

t

a
t
s

b y dy
dz

−















∫

 

(A.22)

Again, we confirm that for ƒ1, we have b  m, h(t)= 
a(t), q  0, and V(s,t)  A(s,t) as is consistent with the 
results of Zaider and minerbo [23]. Similarly, for ƒ0, 
we obtain b0, d  m  a, and the generating function 
for Pi(t) as found in Dawson and Hillen [24].

We now solve for W. equation A.10 has the char-
acteristic equations

ds
dt

s t s sq  ( 1)( ( )), (0) ,0− g Γ    
 

(A.23)

dW
dt

f a s W W s sq m(1 ) ( 1) , ( ,0) .2
0 0

0− −    
 

(A.24)

The initial condition can be expressed by as

 s s e

t

q z dz

0
0

( ( ))

1 ( 1) .



+ −
−∫ g Γ

 (A.25)
If we let

 Λ
Γ

q

t

q z dz

t e( ) ,0

( ( ))



∫ g

 (A.26)
then

s
s(t)
(t)q

0 1
1

 



. 

The equations for the generating functions coincide 
with those of Zaider and minerbo [23] when ƒ1 
and 

q(t) = 
j

jQ j




0

0
∞

∑ ,  

and with those of Dawson and Hillen [24] when 
ƒ0.
Step 4(b): We use the method of characteristics to 
solve the above system, first for V and then for W. 
To solve for V, let

 b f f ta  m d m, (1 ) ( ).− Γ  (A.12)

Then equation A.9 has the characteristic equations

 ds
dt

s bs s b

b s s s

 



(1 )( ) (1 )( )

(1 ) , (0) ,2
0

− − − −

− −

d d

   
(A.13)

 

dV
1 V, V s

dt
q s sa g ( , ) .) ( 0 00 0=

 
(A.14)

We introduce y t
s

( )
1

1



 to transform equation 

A.13 into a linear equation for y(t):

 
dy

b y b y
dt s

ds
dt

t
s

   
1

1
1

12
0( )

.
− −

( ) ( )d , (0) =
 

(A.15)

The solution is

 
y t t y b y dya

t

a( ) ( ) (0) ( ) ,1

0
 Λ Λ− −





∫   

where

 Λa

t

b z dz

t e( ) .0

( ( ))



− −∫ d

 (A.16)

Therefore,

 

1
1 ( )
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1

1
( )1

0 0− −
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− ∫s t
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b y dya

t

a Λ Λ ,
 
(A.17)

such that

 

s
t

s t
b y dya

t

a

0

0

1
1

( )
1 ( )

( )
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−

− ∫Λ Λ
 

(A.18)

equation A.14 is linear in V and can be solved 
directly

 
V s t t s q z s z dza

t

( ( ), ) ( )( ( ) 1) .0
0

0
 exp g∫ −





  

(A.19)
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+2 (1 f) a(y)
(s 1) (y)

(t)0

t
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Λ
Λ

q

q

dy .

     (A.30)

When f0, this solution is the same as the solution 
found by Dawson and Hillen [24].

 Step 5: Based on the explicit solution formulas for 
V in equation A.22 and W in equation A.30, the 
TCP is 

TCP V t W t

t f z dz t
a
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(A.31)

where a is given by equation A.16 and a by  
equation A.26.

Therefore W(s(t),t) can be 

expressed as

W s t t
s t
t

f a y s y dy

q

q
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( ( ), ) (1
1 ( )

( )
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(1 ) ( )( ( ) 1)
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(A.27)

Here we use the fact that 
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, 

and obtain the relations
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Then W (s,t) can be expressed as
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