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Question 1. [p 395, #3]

Find the Fourier integral representation of the function

f(x) =

{
1 − cosx if − π

2 < x < π
2 ,

0 otherwise.

Solution: The Fourier integral representation of f(x) is given by

f(x) ∼
∫ ∞

0

(A(ω) cos ωx + B(ω) sin ωx) dω,

where

A(ω) =
1

π

∫ ∞

−∞

f(t) cosωt dt and B(ω) =
1

π

∫ ∞

−∞

f(t) sin ωt dt.

Since f(x) is an even function, then B(ω) = 0 for all ω.

Also, since f(x) is even and f(x) = 0 for |x| ≥ π
2 , then for all ω 6= 0 and ω 6= ±1, we have

A(ω) =
2

π

∫ π/2

0

(1 − cos t) cosωt dt

=
2

π

∫ π/2

0

cosωt dt − 2

π

∫ π/2

0

cos t cosωt dt

=
2

π

sin(ωπ/2)

ω
− 1

π

∫ π/2

0

[cos(1 − ω)t + cos(1 + ω)t] dt

=
2

π

sin(ωπ/2)

ω
− 1

π

sin(1 − ω)t

1 − ω

∣∣∣∣
π/2

0

− 1

π

sin(1 + ω)t

1 + ω

∣∣∣∣
π/2

0

=
2

π

sin(ωπ/2)

ω
− 1

π

sin((1 − ω)π/2)

1 − ω
− 1

π

sin((1 + ω)π/2)

1 + ω

=
2

π

sin(ωπ/2)

ω
− cos(ωπ/2)

π

[
1

1 − ω
+

1

1 + ω

]

=
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1 − ω2

]
,

so that

A(ω) =
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1 − ω2

]

for ω 6= 0,±1.



If ω = 0, then

A(0) =
2

π

∫ π/2

0

(1 − cos t) dt =
2

π

[π

2
− sin(π/2)

]
= 1 − 2

π
.

If ω = ±1, then

A(±1) =
2

π

sin(±π/2)

±1
− 2

π

∫ π/2

0

cos2 t dt =
2

π
− 2

π

∫ π/2

0

(
1 + cos 2t

2

)
dt =

2

π
− 1

2
.

Note that A(w) is continuous for all ω.

From Dirichlet’s theorem, the integral

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1 − ω2

]
cosωx dω

converges to 1 − cosx for all |x| < π
2 , converges to 0 for all |x| > π

2 , and converges to 1
2 for x = ±π

2 .

Thus, if we redefine f(±π/2) = 1
2 , then the Fourier integral representation of f(x) is given by

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1 − ω2

]
cosωx dω = f(x) =





1 − cosx for |x| < π
2

0 for |x| > π
2

1
2 for x = ±π

2 .

Question 2. [p 395, #9]

Find the Fourier integral representation of the function

f(x) =





x if − 1 < x < 1,

2 − x if 1 < x < 2,

−2− x if − 2 < x < −1,

0 otherwise.

Solution: The graph of f(x) is shown below and it is easy to see that the function f(x) is an odd function.
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Therefore, A(ω) = 0 for all ω, and

B(ω) =
2

π

∫ 2

0

f(t) sin ωt dt =
2

π

∫ 1

0

t sin ωt dt +
2

π

∫ 2

1

(2 − t) sinωt dt.



Therefore, integrating by parts, we have

B(ω) =
2

π

[
−t

ω
cosωt

∣∣∣∣
1

0

+

∫ 1

0

cosωt

ω

]
+

2

π

[
−2 + t

ω
cosωt

∣∣∣∣
2

1

−
∫ 2

1

cosωt

ω
dt

]

=
2

π

[
−cosω

ω
+

sin ωt

ω2

∣∣∣∣
1

0

]
+

2

π

[
cosω

ω
− sinωt

ω2

∣∣∣∣
2

1

]

=
2

π

[
2 sinω

ω2
− sin 2ω

ω2

]

=
2

π

(
2 sinω − sin 2ω

ω2

)
,

that is,

B(ω) =
2

π

(
2 sinω − sin 2ω

ω2

)

for all ω 6= 0.

If ω = 0, then

B(0) =
2

π

∫ 2

0

f(t) sin(0 · t) dt = 0.

Since f(x) is continuous everywhere, from Dirichlet’s theroem, the Fourier sine integral converges to f(x)
for all x, and therefore

2

π

∫ ∞

0

(
2 sinω − sin 2ω

ω2

)
sin ωx dω = f(x)

for all x ∈ R.

Question 3. [p 407, #4]

Let

f(x) =

{
x if |x| < 1,

0 otherwise.

(a) Plot the function f(x) and find its Fourier transform.

(b) If f̂ is real valued, plot it; otherwise plot
∣∣ f̂

∣∣.
Solution:

(a) The graph of the function f(x) is plotted below.
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The Fourier transform of f(x) is computed as

f̂(ω) =
1√
2π

∫ ∞

−∞

f(t)e−iωt dt =
1√
2π

∫ 1

−1

te−iωt dt

=
1√
2π

[
− t

iω
e−iωt

∣∣1
−1

+
1

iω

∫ 1

−1

e−iωt dt

]

=
1√
2π

[
− 1

iω

(
e−iω + eiω

)
− 1

(iω)2
e−iωt

∣∣∣∣
1

−1

]

=
2i√
2π

[(
eiω + e−iω

2ω

)
−

(
eiω − e−iω

2iω2

)]

=
2i√
2π

(
ω cosω − sin ω

w2

)
,

so that

f̂(ω) = i

√
2

π

(
ω cosω − sin ω

w2

)

for all ω 6= 0.

If ω = 0, then

f̂(0) =
1√
2π

∫ 1

−1

t dt =
1√
2π

t2

2

∣∣∣∣
1

−1

= 0,

and from L’Hospital’s rule, we see that lim
ω→0

f̂(ω) = 0 also, so that f̂(ω) is continuous at each ω.

(b) Since

f̂(ω) = i

√
2

π

(
ω cosω − sin ω

w2

)
,

then ∣∣∣f̂(ω)
∣∣∣ =

√
2

π

∣∣∣∣
sin ω − ω cosω

ω2

∣∣∣∣

for all ω.

Note that the zeros of the function g(ω) = sin ω − ω cosω are precisely the roots of the equation

tan ω = ω, so the graph of
∣∣∣f̂(ω)

∣∣∣ looks something like the figure below.
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Question 4. [p 407, #10] Reciprocity relation for the Fourier transform.

(a) From the definition of transforms, explain why

F(f)(x) = F−1(f)(−x).

(b) Use (a) to derive the reciprocity relation

F2(f)(x) = f(−x),

where F2(f) = F (F(f)) .

(c) Conclude the following: f is even if and only if F2(f)(x) = f(x);

f is odd if and only if F2(f)(x) = −f(x).

(d) Show that for any f, F4(f) = f.

Solution:

(a) Note that the Fourier transform of f is

F(f)(ω) =
1√
2π

∫ ∞

−∞

f(t)e−iωt dt,

and evaluating this transorm at ω = x, and making a change of variables, we get

F(f)(x) =
1√
2π

∫ ∞

−∞

f(t)e−ixt dt =
1√
2π

∫ ∞

−∞

f(t)ei(−x)t dt

=
1√
2π

∫ ∞

−∞

f(ω)eiω(−x) dω = F−1(f)(−x),

that is,
F(f)(x) = F−1(f)(−x)

for all x ∈ R.

(b) Let f̂ be the Fourier transform of f, from part (a) we have

F
(
f̂
)
(x) = F−1

(
f̂
)
(−x) = f(−x),

and therefore
F2(f)(x) = f(−x)

for all x ∈ R.

(c) The function f is even if and only if f(−x) = f(x) for all x ∈ R, but from part (b), we have f is even
if and only if

F2(f)(x) = F
(
f̂
)
(x) = f(−x) = f(x)

for all x ∈ R. Similarly, f is odd if and only if f(−x) = −f(x) for all x ∈ R, but again from part (b),
we have f is odd if and only if

F2(f)(x) = F
(
f̂
)
(x) = f(−x) = −f(x)

for all x ∈ R.

(d) For any integrable f, we have

F4(f)(x) = F2
(
F2(f)

)
(x) = F2(f)(−x) = f(−(−x)) = f(x)

for all x ∈ R.



Question 5. [p 410, #55] Basic Properties of Convolutions.

Establish the following properties of convolutions. (These properties can be derived directly from the defi-
nitions or by using the operational properties of the Fourier transform.)

(a) f ∗ g = g ∗ f (commutativity).

(b) f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity).

(c) Let a be a real number and let fa denote the translate of f by a, that is,

fa(x) = f(x − a).

Show that
(fa) ∗ g = f ∗ (ga) = (f ∗ g)a.

This important property says that convolutions commute with translations.

Solution: The most convenient way to prove these properties are true is to use the uniqueness of the

Fourier transform, that is, if f and g are integrable and if f̂ = ĝ, then f = g. However, we will prove them
directly from the definition of the convolution.

(a) Given absolutely integrable functions f and g, we make a simple substitution in the definition of the
convolution to get

f ∗ g(x) =
1√
2π

∫ ∞

−∞

f(x − t)g(t)dt =
1√
2π

∫ ∞

−∞

f(s)g(x − s)ds = g ∗ f(x),

for all x ∈ R, and therefore f ∗ g = g ∗ f.

(b) Let f, g, and h be absolutely integrable, then

f ∗ (g ∗ h) =
1√
2π

∫ ∞

−∞

f(x − t)(g ∗ h)(t) dt

=
1√
2π

∫ ∞

−∞

f(x − t)

(
1√
2π

∫ ∞

−∞

g(t − s)h(s) ds

)
dt

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞

f(x − t)g(t − s)h(s) ds

)
dt

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞

h(s)f(x − t)g(t − s) dt

)
ds (v = x − s)

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞

h(x − v)f(x − t)g(t − (x − v)) dt

)
dv (u = x − t)

=
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞

h(x − v)f(u)g(v − u) du

)
dv

=
1√
2π

∫ ∞

−∞

h(x − v)

(
1√
2π

∫ ∞

−∞

f(u)g(v − u) du

)
dv

=
1√
2π

∫ ∞

−∞

h(x − v)(g ∗ f)(v) dv

=
1√
2π

∫ ∞

−∞

h(x − v)(f ∗ g)(v) dv

= h ∗ (f ∗ g) = (f ∗ g) ∗ h



(c) We use the shift theorem

F(fa)(ω) = F(f(x − a))(ω)

=
1√
2π

∫ ∞

−∞

f(t − a)e−iωt dt

=
1√
2π

∫ ∞

−∞

f(s)e−iω(s+a) dt

= e−iωaF(f)(ω),

for all ω, so that
F(fa) = e−iωaF(f).

We have

F ((f ∗ g)a(x)) = F ((f ∗ g)(x − a))

= e−iωaF ((f ∗ g)(x))

= e−iωaF(f(x))F(g(x))

= F(fa(x))F(g(x))

= F ((fa) ∗ g)(x)) ,

and F ((f ∗ g)a) = F ((fa) ∗ g)) . Since the Fourier transform is unique, then (f ∗ g)a = (fa) ∗ g.

We can also prove this directly, as follows.

(f ∗ g)a(x) = (f ∗ g)(x − a)

=
1√
2π

∫ ∞

−∞

f(x − a − t)g(t) dt

=
1√
2π

∫ ∞

−∞

fa(x − t)g(t) dt

= ((fa) ∗ g)(x)

for all x ∈ R, so that (f ∗ g)a = (fa) ∗ g.

Also, since f ∗ g = g ∗ f, we have

(f ∗ g)a = (g ∗ f)a = (ga) ∗ f = f ∗ (ga).



Question 6. [p 418, #3]

Determine the solution of the following initial boundary value problem for the heat equation

∂u

∂t
=

1

4

∂2u

∂x2
, −∞ < x < ∞, t > 0,

u(x, 0) = e−x2

, −∞ < x < ∞.

Give your answer in the form of an inverse Fourier transform.

Solution: We hold t fixed and take the Fourier transform of the partial differential equation and the initial
condition with respect to the space variable to get the initial value problem for û(ω, t) = F(u(x, t))(ω) :

dû

dt
(ω, t) = −ω2

4
û(ω, t),

û(ω, 0) = F
(
e−x2)

(ω) =
1√
2
e−

ω2

4 .

The general solution to this first-order linear equation is

û(ω, t) = A(ω)e−
ω2

4 t,

and we can determine the “constant” of integration A(ω) from the initial condition. Setting t = 0, we get

û(ω, 0) = A(ω) =
1√
2
e−

ω2

4 ,

so that

û(ω, t) =
1√
2
e−

ω2

4 e−
ω2

4 t =
1√
2
e−

ω2

4 (1+t).

Taking the inverse transform, the solution is

u(x, t) =
1

2
√

π

∫ ∞

−∞

e−
ω2

4 (1+t)eiωx dω

for −∞ < x < ∞, t ≥ 0.

Question 7. [p 418, #11]

Solve the following initial boundary value problem

∂u

∂x
=

∂u

∂t
, −∞ < x < ∞, t > 0,

u(x, 0) = f(x), −∞ < x < ∞.

Assume that the function f has a Fourier transform.

Solution: Taking the Fourier transform of the partial differential equation and the initial condition with
respect to x, we have

dû

dt
(ω, t) − iωû(ω, t) = 0,

û(ω, 0) = f̂(ω).



The general solution to this first-order linear equation is

û(ω, t) = A(ω)eiωt,

and we can determine the “constant” of integration A(ω) from the transformed initial condition

û(ω, 0) = A(ω) = f̂(ω).

Therefore,

û(ω, t) = f̂(ω) · eiωt,

and taking the inverse Fourier transform, we have

u(x, t) =
1√
2π

∫ ∞

−∞

f̂(ω)eiωteiωx dω

=
1√
2π

∫ ∞

−∞

f̂(ω)eiω(x+t) dω

= f(x + t),

and the solution is
u(x, t) = f(x + t)

for −∞ < x < ∞, t ≥ 0.

Question 8. [p 426, #2]

Use convolutions, the error function, and operational properties of the Fourier transform to solve the initial
boundary value problem

∂u

∂t
=

1

100

∂2u

∂x2
, −∞ < x < ∞, t > 0,

u(x, 0) =





100 if − 2 < x < 0,

50 if 0 < x < 1,

0 otherwise.

Solution: Transforming the heat equation and the initial conditions, we get the solution to the transformed
problem

û(ω, t) = f̂(ω)e−ω2t/100.

Since this is the product of two Fourier transforms, we know that it is the Fourier transform of a convolution,
and taking the inverse transorm, the solution is

u(x, t) =
1

10
√

2t
e−

x2

400t ∗ f(x) =
1

20
√

πt

∫ ∞

−∞

f(s)e−
(x−s)2

400t ds,

that is,

u(x, t) =
1

20
√

πt

[∫ 0

−2

100e−
(x−s)2

400t ds +

∫ 1

0

50e−
(x−s)2

400t ds

]
.



We can write the solution

u(x, t) =
1

20
√

πt

[∫ 0

−2

100e−
(x−s)2

400t ds +

∫ 1

0

50e−
(x−s)2

400t ds

]

in terms of the error function

erf(w) =
2√
π

∫ w

0

e−z2

dz,

by letting z =
x − s

20
√

t
, so that dz = − 1

20
√

t
ds, then

u(x, t) =
100√

π

∫ x+2
20

√
t

x
20

√
t

e−z2

dz +
50√
π

∫ x
20

√
t

x−1
20

√
t

e−z2

dz,

that is,

u(x, t) = 50
[
erf

(
x+2
20

√
t

)
− erf

(
x

20
√

t

)]
+ 25

[
erf

(
x

20
√

t

)
− erf

(
x−1
20

√
t

)]
.

Question 9. [p 439, #6]

Find the Fourier cosine transform of

f(x) =

{
1 − x if 0 < x < 1,

0 if x ≥ 1.

and write f(x) as an inverse cosine transform. Use a known Fourier transform and the fact that if f(x), x ≥ 0,
is the restriction of an even function fe, then

Fc(f)(ω) = F(fe)(ω)

for all ω ≥ 0.

Solution: The Fourier cosine transform of the function f is given by

f̂c(ω) =

√
2

π

∫ ∞

0

f(t) cosωt dt =

√
2

π

∫ 1

0

(1 − t) cosωt dt,

and this is the same as the Fourier transform of the even extension fe of f to the whole real line R.

In this case however, we can evaluate the last integral directly by integration by parts:

∫ 1

0

(1 − t) cosωt dt =

∫ 1

0

cosωt dt −
∫ 1

0

t cosωt dt

=
sin ωt

ω

∣∣∣∣
1

0

−
[
t · sin ωt

ω

∣∣∣∣
1

0

− 1

ω

∫ 1

0

sinωt dt

]

=
sin ω

ω
− sin ω

ω
+

1

ω

[
− 1

ω
cosωt

∣∣∣∣
1

0

]

=
1 − cosω

ω2
,

and therefore

f̂c(ω) =

√
2

π
· 1 − cosω

ω2

for ω > 0.



Knowing that fc is absolutely integrable implies that f̂c is continuous at ω = 0, and we have

f̂c(0) = lim
ω→0+

√
2

π
· 1 − cosω

ω2
=

√
2

π
· lim

ω→0+

sin ω

2ω
=

1√
2π

by L’Hospital’s rule.

Therefore, we have

f̂c(ω) =





√
2

π
· 1 − cosω

ω2
for ω > 0

1√
2π

for ω = 0.

Since fe is continuous for all x ∈ R, from Dirichlet’s theorem the inverse Fourier cosine transform of f̂c is
given by

2

π

∫ ∞

0

1 − cosω

ω2
· cosωx dω =

{
1 − x for 0 ≤ x < 1

0 for x ≥ 1.

Question 10. [p 439, #12]

Find the Fourier sine transform of
f(x) =

x

1 + x2
, x > 0,

and write f(x) as an inverse sine transform. Use a known Fourier transform and the fact that if f(x), x ≥ 0,
is the restriction of an odd function fo, then

Fs(f)(ω) = iF(fo)(ω)

for all ω ≥ 0.

Solution: We can find the Fourier sine transform of the given function using the suggested method, or we
can find it directly. To do this, we consider the function

g(x) = e−x, x > 0

with Fourier sine transform given by

ĝs(ω) =

√
2

π

∫ ∞

0

e−t sin ωt dt

and we can evaluate this integral by integrating by parts:

∫ ∞

0

e−t sin ωt dt = −e−t

ω

∣∣∣∣
∞

0

− 1

ω

∫ ∞

0

e−t cosωt dt

=
1

ω
− 1

ω

[
e−t · sin ωt

ω

∣∣∣∣
∞

0

+
1

ω

∫ ∞

0

e−t sin ωt dt

]

=
1

ω
− 1

ω2

∫ ∞

0

e−t sin ωt dt

so that (
1 +

1

ω2

) ∫ ∞

0

e−t sin ωt dt =
1

ω
.



Therefore, ∫ ∞

0

e−t sin ωt dt =
ω

1 + ω2

for ω ≥ 0, so that

ĝs(ω) =

√
2

π
· ω

1 + ω2

for ω ≥ 0.

Taking the inverse Fourier sine transform of this, we have

g(x) =

√
2

π

∫ ∞

0

ĝs(ω) sin ωx dω =
2

π

∫ ∞

0

ω

1 + ω2
sinωx dω,

that is,

e−ω = g(ω) =
2

π

∫ ∞

0

x

1 + x2
sinωx dx,

and

f̂s(ω) =

√
2

π

∫ ∞

0

x

1 + x2
sinωx dx =

√
π

2
· g(ω) =

√
π

2
· e−ω

for ω ≥ 0.

From the above, we can write f(x) as an inverse Fourier sine transform:

f(x) =
x

1 + x2
=

∫ ∞

0

e−ω sin ωx dω

for x > 0.


