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Question 1. [p 205, #2]
Solve the vibrating membrane problem given below:
10u

), 0<r<1, t>0

9%u
o7 trar

9%u

— =100

ot? or?

u(a,t) =0, t>0
0<r<i1

u(r,0) =1 —1r2,
0<r<l.

ou
5 (r,0) =1,

SoLuTION: Since f(r) =1 —1r? and g(r) = 1 are radially symmetric, we may assume that the solution does
O<r<l1

You may use formula (11) from the text.
not depend on 6 (we can show this by separating variables and applying periodicity conditions in ). Also,
we expect periodic functions in ¢, and in order to separate variables we write u(r,t) = R(r)-T(t), and obtain

rR" + R+ XrR =0,
R(a) =0,
0<r<i,

the problems
|R(r)| <=M,

T" +100\*T =0, t>0.

for some constant M, and
r >0,

The solutions to the first problem are
R(r) = Jo(Ar),

where Jy is the Bessel function of order 0 of the first kind. The boundary condition u(1,¢) = 0 for all ¢ > 0

can be satisfied by requiring that R(1) = 0, that is, Jo(A) = 0, so that A must be a root of the Bessel function

T

Jo. Now, Jy has infinitely many positive zeros, and we write them as
o <ag<az<-<ap<

and therefore we have nontrivial solutions to the boundary value problem only when
An = an;

n=1,2,3,..., and these are the eigenvalues of the boundary value problem, the corresponding eigenfunctions
R, (r) = Jo (anr),

are

forn=1,2,3....



The solution to the differential equation for T corresponding to A\, = «, is given by

T,.(t) = A, cos 10\t + By, sin 10A,t,

and the functions
Un(r,t) = (An cos 10\t + By, sin 10A\,t) Jo(An7)

satisfy the wave equation and the boundary condition for each n =1,2,....

Using the superposition principle, we write the solution as a Fourier-Bessel expansion

u(r,t) =Y (Ancos10A,t + By sin 10A,t) Jo(Anr),

n=1

(%)

and evaluate the coefficients A,, and B, from the initial conditions. In order to do this, we need the

orthonality conditions

1
/ rdo(Anr)Jo(Amr)dr =0
0

for n # m. In order to see this, we recall that R, and R,, satisfy the equations

(rR,) + X2rR, =0
(rR,,) + A2 rRy =0

and multiplying the first equation by R,, and the second equation by R, and subtracting, we get

/

(rR.) R — (rR.)) Ry = (A2, — A2)rRy R,

m

that is,
/

(r(Rm By, — RuR;,)) = (A7 = A )r R R,

and integrating this last equation from 0 to 1 and using the fact that R,,(1) = R, (1) =0, we have

(/\3I — )\,Qn)/o R, (r)Ry(r)dr =0

for n # m, and since A\, # \,,, we have

1
/ rJo (anr) Jo (amr) dr =0
0

()

for n # m, and the eigenfunctions are orthogonal with respect to the weight function r on the interval [0, 1].

In order to determine the coefficient A,, from the initial condition, we also need to know the value of

1
/ rR,(r)*dr,
0

and we can determine this by considering the differential equation satisfied by R,, namely,

(rR.)) + XrR, =0,

and multiplying this by 2rR, to get

d
o [(rR;,)*] + 2X\2r*RuR), = 0,



and integrating both terms we get

1
+ A2
0

1 1
—/ 2r Ry, (r)*dr| =0,
o Jo

where we integrated by parts in the second integral. Since R, (1) = 0, we get

2

(rR,(r)) Ry (r)?

1
R, (1)? — Ai/ 2r R, (r)* dr = 0,
0
that is,
/0 rR,(r)* dr = e

n

1 1
2= §J6(/\n)2 = §J1()\n)2 (5 % %)

for n =1,2,3,.... Where we have used the identity J{(r) = —J1(r).

Ry, (1)

Now we can use the initial conditions to determine the coefficients in the solution (*). Setting ¢ = 0,
multiplying by rR,,(r), and integrating from 0 to 1, we get

17“ r r)dr = 17" r)2dr = M
/()f()Rde —Am/0 Ron(r)? dr = 4, 200

and since f(r) =1 —r?, we have

2 ! ) 2 ! )
A, = m/o (1 —r*)Ry(r)dr = m/o (1 —r)Jo(Amr) dr

form=1,2,3,....

If we make the substitution s = A, in the last integral, we get

1

1 Am
/0 r(1 =12 Jo(Apr) dr = g/o s(A2, — s%)Jy(s)ds,

and integrating by parts with u = A2, — s? and dv = Jy(s)sds so that

v= / sJo(s) ds = 51 (s),

we get
! 2 2 [ 2 2 o 2
/ r(1 = 12)Jo () dr = A—4/ R()ds = 55 R(s)| = 31 B0,
0 m J0 m 0 m
form=1,2,3,..., where we used the identity

/xp+1Jp(:c) dr = 2P I, (x) + C.



Therefore,

2 ! 4J2(Am)
. 1—r2)JoAmr) dr = —222m0
T, T RO = R

and finally, since A, is a zero of Jy, from the identity

Ap =

To(@) + Ja(x) = %Jl (@),

we have

form=1,2,3,..., and
o0 8
P =10 = 3 5 gy e 07 <

is the Fourier-Bessel expansion for the initial displacement.

In order to compute the B,,’s, we differentiate (x) with respect to ¢ and then set t = 0 to get

1= g(T) = %(Ta O) = Z 1OAanJO(>\nT)7
n=1

and a similar argument to that above shows that

1

By = —5——
5)‘12nJ1 ()‘m)

form=1,2,3,..., therefore the solution is

= Jonr .
u(r,t) = Z #1(/\1) [40 cos(10A,t) + Ay, sin(10A,1)]

n=1
for0<r<1,and t > 0.

Question 2. [p 206, #4]

Solve the vibrating membrane problem given below:

0<r<l1, t>0

0% (82u 1 8u)

52 = o *7ar
u(a,t) =0, t>0
u(r,0) =0, 0<r<l1
0

8_1;(T7 0) = Jo(asr), 0<r<l.

You may use formula (11) from the text.

SOLUTION: As in the previous problem, the solution is
u(r,t) = Z (A, cos At + By sin A\pt) Jo(Apr),
n=1

where )\, is the n'P positive root of the Bessel function Jo.



In this case, however, u(r,0) = f(r) = 0 for 0 < r < 1, so that 4,, = 0 for all n > 1. We use the initial
condition 9
u

a(r, 0) = Jo(agr), 0<r<1

and the orthogonality to determine the B,,’s, as in the previous problem, we have

2 1
Bn = m/o TJ()(/\g’I”)Jo(AnT) dr =0

for all n # 3, while for n = 3, we have

2 2

1
1
By=———= [ rdo(Nsr)?dr = ——— - =
3 )\3J1(/\3)2/0 0(As7) XsJi(A5)2 2

and the solution is 1
u(r,t) = —Jo(Agr) sin Ast
A3
for0<r<1,and t > 0.
Question 3. [p 331, #2]

If f(x) is an even function and g(z) is an odd function, show that the set of functions {f(x),g(z)} is
orthogonal with respect to the weight function

w(z) =1
on any symmetric interval [—a, a] containing 0.
SoLuTION: We have

a 0 a
f@g@)de = [ f(e)g(x)du+ / f(@)g(z) da
0

—a —a
~—_———

t=—x

- /a F(=t)g(—t)dt + /a f(x)g(x) dx
0 0

- _/af(t)g(t) dt+/af(z)g(fﬂ)d$
0 0
= 07

and therefore f and g are orthogonal on the symmetric interval [—a, a] with respect to the weight function
w(z) = 1.

Question 4. [p 332, #6]

1
Show that the set of Laguerre polynomials {1, 11—z, 5(2 —4dzr + :1:2)} is orthogonal with respect to the

weight function

w(x) =e "

on the interval [0, c0).



SOLUTION: Recall that for n > 0 we have

o0
/ z"e " dx = nl,
0

and therefore
< 1,1—9:>:/ (I1—-2z)e ®dz=0-11=0,
0

1 1
<1,5(2—4m+x2)>:O!—2~1!+§-2!=1—2+1:0

and finally,
<1—m,%(2—4m+m2)>:< 17%(2—4m+x2)>—<m,%(2—4m+m2)>
3!
_0—<1!—2.2!+5>
=-1+4-3
=0,

so the set of functions does form an orthogonal set on the interval [0, co) with respect to the weight function
w(z) =e ",

Question 5. [p 332, #8]

1
Is the set of functions {5(2 — 4z +2%), 122 + 8;1:3} orthogonal with respect to the weight function

w(z) =e

on the interval [0, 00)?

SOLUTION: These functions are not orthogonal with respect to the weight function w(z) = e~ on the
interval [0, c0), in fact,

1
<8x3—12x7§(:v2—4x+2)>:2<2x3—3x7x2—4x+2>
= 2/ (22° — 32)(2? — 4o + 2)e “dx
0

=2/ (22° — 82t 4+ 2® + 122 — 62)e " dx
0
=2[2-5!—8-41+31+12-21 —6-1!]
=2-72=144.

As an exercise, show that the first five Laguerre polynomials in the orthogonal basis with respect to this
weight function on [0, 00) are given by

Lo(z) =1, Li(zx)=2—-1, Lo(x)=2x*—4z+2,

Li(x) = 2® — 922 + 182z — 6, L4(z) = 2* — 162° + 722% — 962 + 24



Question 6. [p 344, #6]

Given the boundary value problem

J + 14+ Mz
x

y(1) =0
0,

on the interval [1, 2], put the equation in Sturm-Liouville form and decide whether the problem is regular or
singular.

SOLUTION: We can rewrite the boundary value problem in the form

and here p(z) =z, p'(x) =1, q(z) =0, r(x) = x are all continuous on the interval [1, 2], with p(z) > 0 and
r(z) > 0 for all € [1,2]. Also, ¢;1 = dy =1 and ¢o = dy = 0, so this is a regular Sturm-Liouville problem
on the interval [1,2].

Question 7. [p 344, #8]

Given the boundary value problem

(1 —2?)y" = 2zy’ + (1 4+ Ax)y =
y(=1) =0
y(1) =0,
on the interval [—1,1], put the equation in Sturm-Liouville form and decide whether the problem is regular
or singular.

SOLUTION: We can rewrite the boundary value problem in the form

(1- x2)y')/ + (14 Mz)y =

y(=1)=0
y(1)=0
and here p(z) = 1 — 2%, p'(z) = =2z, q(z) = 1, r(z) = x are all continuous on the interval [—1,1]. Also,

ClzdlzlandCQZdQZO.

However, p(z) = 0 at the endpoints of the interval [—1, 1], and r(0) = 0, so this is a singular Sturm-Liouville
problem.



Question 8. [p 344, #14]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y' +Ay=0
y(—m) = y(m)
y'(—m) =y'(m)

SOLUTION:

Case I: If A = 0, then the equation y” = 0 has general solution y(z) = Ax + B with y' = A. The first
periodicity condition gives
—Ar+B=Ar+ B

so that A = 0. The second periodicity condition is then automatically satisfied, so there is one nontrivial
solution in this case. The eigenvalue is A = 0 with corresponding eigenfunction yg = 1.

Case 2: If A < 0, say A\ = —pu? where pu # 0, then the differential equation becomes 3" — p?y = 0, and
has general solution y(z) = A cosh px + Bsinh pz with ¥’ = pAsinh pxz + puB cosh pz. The first periodicity
condition gives

Acosh um — Bsinh ym = A cosh um + B sinh pm,

since cosh ux is an even function and sinh ux is an odd function. We have 2Bsinh ur = 0, and since
sinh pum # 0, then B = 0. The solution is then y = A cosh ux, and the second periodicity condition gives

—pAsinh pmr = pAsinh pm,

so that 2uA sinh umr = 0, and since p # 0, then sinh pum # 0, so we must have A = 0. Therefore, there are no
nontrivial solutions in this case.

Case 3: If A > 0, say A\ = pu? where pu # 0, the differential equation becomes y” + 2y = 0, and has general
solution y(x) = Acos ux + Bsin ux, with y'(z) = — Apsin px + B cos pa.

Applying the first periodicity condition, we have
y(—m) = Acos ur — Bsin ur = Acos pr + Bsinur = y(7)

so that 2B sin ym = 0.

Applying the second periodicity condition, we have
y'(—m) = Apsin um + B cos ur = —Apsin pum + B cos um = y' ()
so that 2A sin yum = 0. Therefore, the following equations must hold simultaneously:

Asinur =0
Bsinur =0

In order to get a nontrivial solution, we must have either A # 0, or B # 0, and if the equations hold, we
must have sin ym = 0. Therefore, u must be an integer, so that the eigenvalues are

/\n:,ui:TLQ

for n = 1,2,3..., and the eigenfunctions corresponding to these eigenvalues are sinnx and cosnx for
n=123....



Question 9. [p 344, #16]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y' + Ay =0
y(0) +4'(0) =0
y(2m) = 0.

SOLUTION:

Case I: If A = 0, then the equation y” = 0 has general solution y(z) = Ax + B with y' = A. The first
boundary condition gives
B+A=0

so that A = —B. The second boundary condition gives
2rA+B =0

so that (27 — 1)A =0, and A = —B = 0, so there are no nontrivial solutions in this case.

Case 2: If X\ < 0, say A\ = —pu? where p # 0, then the differential equation becomes y” — p?y = 0, and
has general solution y(z) = A cosh uz + Bsinh pz with y' = pAsinh px + pB cosh pa. The first boundary
condition gives

A+uB=0

so that A = —uB. The second boundary condition gives
Acosh2mp + Bsinh 2wy =0

and since cosh 27 # 0, then
B(tanh 2wy — pu) = 0,

and in order to get nontrivial solutions we need
tanh 2w = p.
The graphs of f(u) = tanh 2wy and g(u) = p intersect at the origin, p = 0, and since

lim tanh27p =1 and lim tanh27py = —1,

H— 00 H——00

and
f1(0) =2r>1=g'(0),

they intersect again in exactly two more points u = +pg, where pg is the positive root of the equation
tanh 27y = p. There is one nontrivial solution in this case, with eigenvalue A = —(1)? and the corresponding
eigenfunction is

sinh poxr — po cosh pox.



Case 3: If A > 0, say A = p? where p # 0, then the differential equation becomes y” + p?y = 0, and has
general solution y(z) = A cospx + Bsin pz with y' = —pAsin ux + pB cos px. The first boundary condition
gives

y(0) +4'(0) =A+puB =0
so that A = —uB. The second boundary condition gives
y(2m) = Acos2mpu + Bsin2mp = 0,
and so
B [sin 27p — pcos 2mp) = 0,

and the eigenvalues are \, = u2, where p, is the n'" positive root of the equation tan2mwy = p. The
corresponding eigenfunctions are

Yn = SIN 1y T — f1y, COS finT

forn=1,2,3,....

Question 10. [p 344, #22]
Show that the boundary value problem

has one positive eigenvalue. Does this contradict Theorem 17
SOLUTION:

Case 1: If X = 0, the differential equation y” = 0 has general solution y = Az + B, with ' = A. Applying
the first boundary condition, we have
B+ A=0,

so that B = —A. Applying the second boundary condition, we have

A+ B+A=0,

so that B = —2A, and therefore B = 2B, and B = A = 0. Therefore, there are no nontrivial solutions in
this case.

Case 2: If A < 0, say A = —u? where p # 0, the differential equation becomes y” + u?y = 0 and has general
solution y = A cos pzx + Bsin px, with y' = —pAsin pz + pB cos px. The first boundary condition gives

y(0) +y'(0) = A+ puB =0

so that A = —uB.

The second boundary condition gives
y(1) +y'(1) = Acosp + Bsinp — pAsinpu + pBcos = 0,

that is,
(cos p — prsin ) A + (sin p + pcos ) B = 0.



The system of linear equations for A and B

A+uB=0
(cosp — psinp)A + (sinp+ pecospu)B =0

has nontrivial solutions if and only if
(1+ p?)sinp =0,

that is if and only if sin u = 0. The eigenvalues are \,, = —(u1,,)> = —n?, with corresponding eigenfunctions

Yn = SINNT — N COSNT

forn=1,2,3,....

Case 3 If A > 0, say A = u?, the differential equation becomes 3" — u?y = 0 and has general solution
y = Acosh px + Bsinh px, with vy’ = pAsinh pz + pB cosh px. The first boundary condition gives

y(0) +y'(0)=A+uB=0

The second boundary condition gives
y(1) +y'(1) = Acosh u + Bsinh yu + pAsinh pu + puB cosh . = 0,

that is,
(cosh pu + psinh ) A + (sinh g + pecosh u) B = 0.

The system of linear equations for A and B

A+uB=0
(cosh pu + psinh p) A + (sinh g + pcoshu)B =0

has nontrivial solutions if and only if
(1 — p?)sinh = 0,

and since sinh p # 0, if and only if 1 — p? = 0, that is, if and only if u = +1.
Therefore, there is only one positive eigenvalue, namely

A= (£1)% =1,

with corresponding eigenfunction
y = sinhx — cosh x.

Note: If r(x) = —1 < 0, then the problem is not a regular Sturm-Liouville problem, and so this does not
contradict Theorem 1, since Theorem 1 does not apply.



