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Question 1. [p 205, #2]

Solve the vibrating membrane problem given below:

∂2u

∂t2
= 100

(
∂2u

∂r2
+

1

r

∂u

∂r

)

, 0 < r < 1, t > 0

u(a, t) = 0, t > 0

u(r, 0) = 1 − r2, 0 < r < 1

∂u

∂t
(r, 0) = 1, 0 < r < 1.

You may use formula (11) from the text.

Solution: Since f(r) = 1− r2 and g(r) = 1 are radially symmetric, we may assume that the solution does
not depend on θ (we can show this by separating variables and applying periodicity conditions in θ). Also,
we expect periodic functions in t, and in order to separate variables we write u(r, t) = R(r) ·T (t), and obtain
the problems

rR′′ + R′ + λ2rR = 0, 0 < r < 1

R(a) = 0,

|R(r)| <= M, 0 ≤ r ≤ 1,

for some constant M, and
T ′′ + 100λ2T = 0, t > 0.

The solutions to the first problem are

R(r) = J0(λr), r > 0,

where J0 is the Bessel function of order 0 of the first kind. The boundary condition u(1, t) = 0 for all t > 0
can be satisfied by requiring that R(1) = 0, that is, J0(λ) = 0, so that λ must be a root of the Bessel function
J0. Now, J0 has infinitely many positive zeros, and we write them as

α1 < α2 < α3 < · < αn < · · · ,

and therefore we have nontrivial solutions to the boundary value problem only when

λn = αn,

n = 1, 2, 3, . . . , and these are the eigenvalues of the boundary value problem, the corresponding eigenfunctions
are

Rn(r) = J0 (αnr) ,

for n = 1, 2, 3 . . . .



The solution to the differential equation for T corresponding to λn = αn is given by

Tn(t) = An cos 10λnt + Bn sin 10λnt,

and the functions
un(r, t) = (An cos 10λnt + Bn sin 10λnt) J0(λnr)

satisfy the wave equation and the boundary condition for each n = 1, 2, . . . .

Using the superposition principle, we write the solution as a Fourier-Bessel expansion

u(r, t) =

∞∑

n=1

(An cos 10λnt + Bn sin 10λnt) J0(λnr), (∗)

and evaluate the coefficients An and Bn from the initial conditions. In order to do this, we need the
orthonality conditions

∫ 1

0

rJ0(λnr)J0(λmr) dr = 0

for n 6= m. In order to see this, we recall that Rn and Rm satisfy the equations

(rR′

n)
′

+ λ2
nrRn = 0

(rR′

m)
′

+ λ2
mrRm = 0

and multiplying the first equation by Rm and the second equation by Rn and subtracting, we get

(rR′

n)
′

Rm − (rR′

m)
′

Rn = (λ2
m − λ2

n)rRnRm,

that is,
(r(RmR′

n − RnR′

m))
′

= (λ2
n − λ2

m)rRnRm,

and integrating this last equation from 0 to 1 and using the fact that Rm(1) = Rn(1) = 0, we have

(λ2
n − λ2

m)

∫ 1

0

rRn(r)Rm(r) dr = 0

for n 6= m, and since λn 6= λm, we have

∫ 1

0

rJ0 (αnr) J0 (αmr) dr = 0 (∗∗)

for n 6= m, and the eigenfunctions are orthogonal with respect to the weight function r on the interval [0, 1].

In order to determine the coefficient An from the initial condition, we also need to know the value of

∫ 1

0

rRn(r)2 dr,

and we can determine this by considering the differential equation satisfied by Rn, namely,

(rR′

n)
′

+ λ2
nrRn = 0,

and multiplying this by 2rR′

n to get

d

dr

[
(rR′

n)2
]
+ 2λ2

nr2RnR′

n = 0,



and integrating both terms we get

(rR′

n(r))
2

∣
∣
∣
∣

1

0

+ λ2
n

[

r2Rn(r)2
∣
∣
∣
∣

1

0

−

∫ 1

0

2rRn(r)2 dr

]

= 0,

where we integrated by parts in the second integral. Since Rn(1) = 0, we get

R′

n(1)2 − λ2
n

∫ 1

0

2rRn(r)2 dr = 0,

that is,
∫ 1

0

rRn(r)2 dr =
1

2λ2
n

R′

n(1)2 =
1

2
J ′

0(λn)2 =
1

2
J1(λn)2 (∗ ∗ ∗)

for n = 1, 2, 3, . . . . Where we have used the identity J ′

0(r) = −J1(r).

Now we can use the initial conditions to determine the coefficients in the solution (∗). Setting t = 0,

multiplying by rRm(r), and integrating from 0 to 1, we get

∫ 1

0

rf(r)Rm(r) dr = Am

∫ 1

0

rRm(r)2 dr = Am

J1(λm)2

2
,

and since f(r) = 1 − r2, we have

Am =
2

J1(λm)2

∫ 1

0

r(1 − r2)Rm(r) dr =
2

J1(λm)2

∫ 1

0

r(1 − r2)J0(λmr) dr

for m = 1, 2, 3, . . . .

If we make the substitution s = λmr in the last integral, we get

∫ 1

0

r(1 − r2)J0(λmr) dr =
1

λ4
m

∫ λm

0

s(λ2
m − s2)J0(s)ds,

and integrating by parts with u = λ2
m − s2 and dv = J0(s)s ds so that

v =

∫

sJ0(s) ds = sJ1(s),

we get
∫ 1

0

r(1 − r2)J0(λmr) dr =
2

λ4
m

∫ λm

0

J1(s)s
2 ds =

2

λ4
m

s2J2(s)

∣
∣
∣
∣

λm

0

=
2

λ2
m

J2(λm),

for m = 1, 2, 3, . . . , where we used the identity

∫

xp+1Jp(x) dx = xp+1Jp+1(x) + C.



Therefore,

Am =
2

J1(λm)2

∫ 1

0

r(1 − r2)J0(λmr) dr =
4J2(λm)

λ2
mJ1(λm)2

,

and finally, since λm is a zero of J0, from the identity

J0(x) + J2(x) =
2

x
J1(x),

we have

Am =
8

λ3
mJ1(λm)

for m = 1, 2, 3, . . . , and

1 − r2 = f(r) =

∞∑

n=1

8

λ3
mJ1(λm)

J0(λnr), 0 < r < 1

is the Fourier-Bessel expansion for the initial displacement.

In order to compute the Bn’s, we differentiate (∗) with respect to t and then set t = 0 to get

1 = g(r) =
∂u

∂t
(r, 0) =

∞∑

n=1

10λnBnJ0(λnr),

and a similar argument to that above shows that

Bm =
1

5λ2
mJ1(λm)

for m = 1, 2, 3, . . . , therefore the solution is

u(r, t) =

∞∑

n=1

J0(λnr)

5λ3
nJ1(λn)

[40 cos(10λnt) + λn sin(10λnt)]

for 0 ≤ r ≤ 1, and t ≥ 0.

Question 2. [p 206, #4]

Solve the vibrating membrane problem given below:

∂2u

∂t2
=

(
∂2u

∂r2
+

1

r

∂u

∂r

)

, 0 < r < 1, t > 0

u(a, t) = 0, t > 0

u(r, 0) = 0, 0 < r < 1

∂u

∂t
(r, 0) = J0(α3r), 0 < r < 1.

You may use formula (11) from the text.

Solution: As in the previous problem, the solution is

u(r, t) =

∞∑

n=1

(An cosλnt + Bn sin λnt) J0(λnr),

where λn is the nth positive root of the Bessel function J0.



In this case, however, u(r, 0) = f(r) = 0 for 0 < r < 1, so that An = 0 for all n ≥ 1. We use the initial
condition

∂u

∂t
(r, 0) = J0(α3r), 0 < r < 1

and the orthogonality to determine the Bn’s, as in the previous problem, we have

Bn =
2

λnJ1(λn)2

∫ 1

0

rJ0(λ3r)J0(λnr) dr = 0

for all n 6= 3, while for n = 3, we have

B3 =
2

λ3J1(λ3)2

∫ 1

0

rJ0(λ3r)
2 dr =

2

λ3J1(λ3)2
·
1

2
J1(λ3)

2 =
1

λ3

and the solution is

u(r, t) =
1

λ3

J0(λ3r) sin λ3t

for 0 ≤ r ≤ 1, and t ≥ 0.

Question 3. [p 331, #2]

If f(x) is an even function and g(x) is an odd function, show that the set of functions {f(x), g(x)} is
orthogonal with respect to the weight function

w(x) = 1

on any symmetric interval [−a, a] containing 0.

Solution: We have

∫ a

−a

f(x)g(x) dx =

∫ 0

−a

f(x)g(x) dx

︸ ︷︷ ︸

t=−x

+

∫ a

0

f(x)g(x) dx

=

∫ a

0

f(−t)g(−t) dt +

∫ a

0

f(x)g(x) dx

= −

∫ a

0

f(t)g(t) dt +

∫ a

0

f(x)g(x) dx

= 0,

and therefore f and g are orthogonal on the symmetric interval [−a, a] with respect to the weight function
w(x) = 1.

Question 4. [p 332, #6]

Show that the set of Laguerre polynomials

{

1, 1 − x,
1

2
(2 − 4x + x2)

}

is orthogonal with respect to the

weight function
w(x) = e−x

on the interval [0,∞).



Solution: Recall that for n ≥ 0 we have

∫
∞

0

xne−x dx = n!,

and therefore

< 1, 1− x >=

∫
∞

0

(1 − x)e−x dx = 0! − 1! = 0,

< 1,
1

2
(2 − 4x + x2) >= 0! − 2 · 1! +

1

2
· 2! = 1 − 2 + 1 = 0

and finally,

< 1 − x,
1

2
(2 − 4x + x2) > =< 1,

1

2
(2 − 4x + x2) > − < x,

1

2
(2 − 4x + x2) >

= 0 −

(

1! − 2 · 2! +
3!

2

)

= −1 + 4 − 3

= 0,

so the set of functions does form an orthogonal set on the interval [0,∞) with respect to the weight function
w(x) = e−x.

Question 5. [p 332, #8]

Is the set of functions

{
1

2
(2 − 4x + x2), −12x + 8x3

}

orthogonal with respect to the weight function

w(x) = e−x

on the interval [0,∞)?

Solution: These functions are not orthogonal with respect to the weight function w(x) = e−x on the
interval [0,∞), in fact,

< 8x3 − 12x,
1

2
(x2 − 4x + 2) > = 2 < 2x3 − 3x, x2 − 4x + 2 >

= 2

∫
∞

0

(2x3 − 3x)(x2 − 4x + 2)e−x dx

= 2

∫
∞

0

(2x5 − 8x4 + x3 + 12x2 − 6x)e−x dx

= 2 [2 · 5! − 8 · 4! + 3! + 12 · 2! − 6 · 1!]

= 2 · 72 = 144.

As an exercise, show that the first five Laguerre polynomials in the orthogonal basis with respect to this
weight function on [0,∞) are given by

L0(x) = 1, L1(x) = x − 1, L2(x) = x2 − 4x + 2,

L3(x) = x3 − 9x2 + 18x − 6, L4(x) = x4 − 16x3 + 72x2 − 96x + 24



Question 6. [p 344, #6]

Given the boundary value problem

y′′ +

(
1 + λx

x

)

y = 0

y(1) = 0

y(2) = 0,

on the interval [1, 2], put the equation in Sturm-Liouville form and decide whether the problem is regular or
singular.

Solution: We can rewrite the boundary value problem in the form

(xy′)′ + λxy = 0

y(1) = 0

y(2) = 0

and here p(x) = x, p′(x) = 1, q(x) = 0, r(x) = x are all continuous on the interval [1, 2], with p(x) > 0 and
r(x) > 0 for all x ∈ [1, 2]. Also, c1 = d1 = 1 and c2 = d2 = 0, so this is a regular Sturm-Liouville problem
on the interval [1, 2].

Question 7. [p 344, #8]

Given the boundary value problem

(1 − x2)y′′ − 2xy′ + (1 + λx)y = 0

y(−1) = 0

y(1) = 0,

on the interval [−1, 1], put the equation in Sturm-Liouville form and decide whether the problem is regular
or singular.

Solution: We can rewrite the boundary value problem in the form

(
(1 − x2)y′

)′
+ (1 + λx)y = 0

y(−1) = 0

y(1) = 0

and here p(x) = 1 − x2, p′(x) = −2x, q(x) = 1, r(x) = x are all continuous on the interval [−1, 1]. Also,
c1 = d1 = 1 and c2 = d2 = 0.

However, p(x) = 0 at the endpoints of the interval [−1, 1], and r(0) = 0, so this is a singular Sturm-Liouville
problem.



Question 8. [p 344, #14]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y′′ + λy = 0

y(−π) = y(π)

y′(−π) = y′(π).

Solution:

Case 1: If λ = 0, then the equation y′′ = 0 has general solution y(x) = Ax + B with y′ = A. The first
periodicity condition gives

−Aπ + B = Aπ + B

so that A = 0. The second periodicity condition is then automatically satisfied, so there is one nontrivial
solution in this case. The eigenvalue is λ = 0 with corresponding eigenfunction y0 = 1.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, then the differential equation becomes y′′ − µ2y = 0, and
has general solution y(x) = A cosh µx + B sinh µx with y′ = µA sinh µx + µB coshµx. The first periodicity
condition gives

A coshµπ − B sinh µπ = A coshµπ + B sinh µπ,

since coshµx is an even function and sinh µx is an odd function. We have 2B sinh µπ = 0, and since
sinh µπ 6= 0, then B = 0. The solution is then y = A coshµx, and the second periodicity condition gives

−µA sinh µπ = µA sinh µπ,

so that 2µA sinh µπ = 0, and since µ 6= 0, then sinhµπ 6= 0, so we must have A = 0. Therefore, there are no
nontrivial solutions in this case.

Case 3: If λ > 0, say λ = µ2 where µ 6= 0, the differential equation becomes y′′ + µ2y = 0, and has general
solution y(x) = A cosµx + B sinµx, with y′(x) = −Aµ sin µx + Bµ cosµx.

Applying the first periodicity condition, we have

y(−π) = A cosµπ − B sin µπ = A cosµπ + B sinµπ = y(π)

so that 2B sin µπ = 0.

Applying the second periodicity condition, we have

y′(−π) = Aµ sin µπ + Bµ cosµπ = −Aµ sin µπ + Bµ cosµπ = y′(π)

so that 2A sinµπ = 0. Therefore, the following equations must hold simultaneously:

A sin µπ = 0

B sin µπ = 0

In order to get a nontrivial solution, we must have either A 6= 0, or B 6= 0, and if the equations hold, we
must have sin µπ = 0. Therefore, µ must be an integer, so that the eigenvalues are

λn = µ2
n = n2

for n = 1, 2, 3 . . . , and the eigenfunctions corresponding to these eigenvalues are sin nx and cosnx for
n = 1, 2, 3 . . . .



Question 9. [p 344, #16]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y′′ + λy = 0

y(0) + y′(0) = 0

y(2π) = 0.

Solution:

Case 1: If λ = 0, then the equation y′′ = 0 has general solution y(x) = Ax + B with y′ = A. The first
boundary condition gives

B + A = 0

so that A = −B. The second boundary condition gives

2πA + B = 0

so that (2π − 1)A = 0, and A = −B = 0, so there are no nontrivial solutions in this case.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, then the differential equation becomes y′′ − µ2y = 0, and
has general solution y(x) = A coshµx + B sinh µx with y′ = µA sinh µx + µB coshµx. The first boundary
condition gives

A + µB = 0

so that A = −µB. The second boundary condition gives

A cosh 2πµ + B sinh 2πµ = 0

and since cosh 2πµ 6= 0, then
B(tanh 2πµ − µ) = 0,

and in order to get nontrivial solutions we need

tanh 2πµ = µ.

The graphs of f(µ) = tanh 2πµ and g(µ) = µ intersect at the origin, µ = 0, and since

lim
µ→∞

tanh 2πµ = 1 and lim
µ→−∞

tanh 2πµ = −1,

and
f ′(0) = 2π > 1 = g′(0),

they intersect again in exactly two more points µ = ±µ0, where µ0 is the positive root of the equation
tanh 2πµ = µ. There is one nontrivial solution in this case, with eigenvalue λ = −(µ0)

2 and the corresponding
eigenfunction is

sinh µ0x − µ0 coshµ0x.



Case 3: If λ > 0, say λ = µ2 where µ 6= 0, then the differential equation becomes y′′ + µ2y = 0, and has
general solution y(x) = A cosµx + B sin µx with y′ = −µA sinµx + µB cosµx. The first boundary condition
gives

y(0) + y′(0) = A + µB = 0

so that A = −µB. The second boundary condition gives

y(2π) = A cos 2πµ + B sin 2πµ = 0,

and so
B [sin 2πµ − µ cos 2πµ] = 0,

and the eigenvalues are λn = µ2
n, where µn is the nth positive root of the equation tan 2πµ = µ. The

corresponding eigenfunctions are
yn = sin µnx − µn cosµnx

for n = 1, 2, 3, . . . .

Question 10. [p 344, #22]

Show that the boundary value problem

y′′ − λy = 0

y(0) + y′(0) = 0

y(1) + y′(1) = 0

has one positive eigenvalue. Does this contradict Theorem 1?

Solution:

Case 1: If λ = 0, the differential equation y′′ = 0 has general solution y = Ax + B, with y′ = A. Applying
the first boundary condition, we have

B + A = 0,

so that B = −A. Applying the second boundary condition, we have

A + B + A = 0,

so that B = −2A, and therefore B = 2B, and B = A = 0. Therefore, there are no nontrivial solutions in
this case.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, the differential equation becomes y′′ + µ2y = 0 and has general
solution y = A cos µx + B sin µx, with y′ = −µA sin µx + µB cosµx. The first boundary condition gives

y(0) + y′(0) = A + µB = 0

so that A = −µB.

The second boundary condition gives

y(1) + y′(1) = A cosµ + B sin µ − µA sinµ + µB cosµ = 0,

that is,
(cosµ − µ sin µ)A + (sin µ + µ cosµ)B = 0.



The system of linear equations for A and B

A + µB = 0

(cosµ − µ sinµ)A + (sin µ + µ cosµ)B = 0

has nontrivial solutions if and only if
(1 + µ2) sin µ = 0,

that is if and only if sin µ = 0. The eigenvalues are λn = −(µn)2 = −n2, with corresponding eigenfunctions

yn = sin nx − n cosnx

for n = 1, 2, 3, . . . .

Case 3: If λ > 0, say λ = µ2, the differential equation becomes y′′ − µ2y = 0 and has general solution
y = A cosh µx + B sinhµx, with y′ = µA sinh µx + µB coshµx. The first boundary condition gives

y(0) + y′(0) = A + µB = 0

The second boundary condition gives

y(1) + y′(1) = A cosh µ + B sinh µ + µA sinh µ + µB coshµ = 0,

that is,
(coshµ + µ sinh µ)A + (sinh µ + µ coshµ)B = 0.

The system of linear equations for A and B

A + µB = 0

(cosh µ + µ sinh µ)A + (sinh µ + µ coshµ)B = 0

has nontrivial solutions if and only if
(1 − µ2) sinh µ = 0,

and since sinh µ 6= 0, if and only if 1− µ2 = 0, that is, if and only if µ = ±1.

Therefore, there is only one positive eigenvalue, namely

λ = (±1)2 = 1,

with corresponding eigenfunction
y = sinh x − coshx.

Note: If r(x) = −1 < 0, then the problem is not a regular Sturm-Liouville problem, and so this does not
contradict Theorem 1, since Theorem 1 does not apply.


