MATH 300 Fall 2004

Advanced Boundary Value Problems I
Solutions to Assignment 4
Due: Friday November 19, 2004
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 205, \#2]
Solve the vibrating membrane problem given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=100\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right), & 0<r<1, \quad t>0 \\
u(a, t)=0, & t>0 \\
u(r, 0)=1-r^{2}, & 0<r<1 \\
\frac{\partial u}{\partial t}(r, 0)=1, & 0<r<1
\end{array}
$$

You may use formula (11) from the text.
Solution: Since $f(r)=1-r^{2}$ and $g(r)=1$ are radially symmetric, we may assume that the solution does not depend on θ (we can show this by separating variables and applying periodicity conditions in θ). Also, we expect periodic functions in t, and in order to separate variables we write $u(r, t)=R(r) \cdot T(t)$, and obtain the problems

$$
\begin{aligned}
r R^{\prime \prime}+R^{\prime}+\lambda^{2} r R & =0, \quad 0<r<1 \\
R(a) & =0 \\
|R(r)| & <=M, \quad 0 \leq r \leq 1
\end{aligned}
$$

for some constant M, and

$$
T^{\prime \prime}+100 \lambda^{2} T=0, \quad t>0
$$

The solutions to the first problem are

$$
R(r)=J_{0}(\lambda r), \quad r>0
$$

where J_{0} is the Bessel function of order 0 of the first kind. The boundary condition $u(1, t)=0$ for all $t>0$ can be satisfied by requiring that $R(1)=0$, that is, $J_{0}(\lambda)=0$, so that λ must be a root of the Bessel function J_{0}. Now, J_{0} has infinitely many positive zeros, and we write them as

$$
\alpha_{1}<\alpha_{2}<\alpha_{3}<\cdot<\alpha_{n}<\cdots,
$$

and therefore we have nontrivial solutions to the boundary value problem only when

$$
\lambda_{n}=\alpha_{n}
$$

$n=1,2,3, \ldots$, and these are the eigenvalues of the boundary value problem, the corresponding eigenfunctions are

$$
R_{n}(r)=J_{0}\left(\alpha_{n} r\right)
$$

for $n=1,2,3 \ldots$.

The solution to the differential equation for T corresponding to $\lambda_{n}=\alpha_{n}$ is given by

$$
T_{n}(t)=A_{n} \cos 10 \lambda_{n} t+B_{n} \sin 10 \lambda_{n} t
$$

and the functions

$$
u_{n}(r, t)=\left(A_{n} \cos 10 \lambda_{n} t+B_{n} \sin 10 \lambda_{n} t\right) J_{0}\left(\lambda_{n} r\right)
$$

satisfy the wave equation and the boundary condition for each $n=1,2, \ldots$.
Using the superposition principle, we write the solution as a Fourier-Bessel expansion

$$
\begin{equation*}
u(r, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos 10 \lambda_{n} t+B_{n} \sin 10 \lambda_{n} t\right) J_{0}\left(\lambda_{n} r\right) \tag{*}
\end{equation*}
$$

and evaluate the coefficients A_{n} and B_{n} from the initial conditions. In order to do this, we need the orthonality conditions

$$
\int_{0}^{1} r J_{0}\left(\lambda_{n} r\right) J_{0}\left(\lambda_{m} r\right) d r=0
$$

for $n \neq m$. In order to see this, we recall that R_{n} and R_{m} satisfy the equations

$$
\begin{aligned}
\left(r R_{n}^{\prime}\right)^{\prime}+\lambda_{n}^{2} r R_{n} & =0 \\
\left(r R_{m}^{\prime}\right)^{\prime}+\lambda_{m}^{2} r R_{m} & =0
\end{aligned}
$$

and multiplying the first equation by R_{m} and the second equation by R_{n} and subtracting, we get

$$
\left(r R_{n}^{\prime}\right)^{\prime} R_{m}-\left(r R_{m}^{\prime}\right)^{\prime} R_{n}=\left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) r R_{n} R_{m}
$$

that is,

$$
\left(r\left(R_{m} R_{n}^{\prime}-R_{n} R_{m}^{\prime}\right)\right)^{\prime}=\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right) r R_{n} R_{m}
$$

and integrating this last equation from 0 to 1 and using the fact that $R_{m}(1)=R_{n}(1)=0$, we have

$$
\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right) \int_{0}^{1} r R_{n}(r) R_{m}(r) d r=0
$$

for $n \neq m$, and since $\lambda_{n} \neq \lambda_{m}$, we have

$$
\begin{equation*}
\int_{0}^{1} r J_{0}\left(\alpha_{n} r\right) J_{0}\left(\alpha_{m} r\right) d r=0 \tag{**}
\end{equation*}
$$

for $n \neq m$, and the eigenfunctions are orthogonal with respect to the weight function r on the interval $[0,1]$. In order to determine the coefficient A_{n} from the initial condition, we also need to know the value of

$$
\int_{0}^{1} r R_{n}(r)^{2} d r
$$

and we can determine this by considering the differential equation satisfied by R_{n}, namely,

$$
\left(r R_{n}^{\prime}\right)^{\prime}+\lambda_{n}^{2} r R_{n}=0
$$

and multiplying this by $2 r R_{n}^{\prime}$ to get

$$
\frac{d}{d r}\left[\left(r R_{n}^{\prime}\right)^{2}\right]+2 \lambda_{n}^{2} r^{2} R_{n} R_{n}^{\prime}=0
$$

and integrating both terms we get

$$
\left.\left(r R_{n}^{\prime}(r)\right)^{2}\right|_{0} ^{1}+\lambda_{n}^{2}\left[\left.r^{2} R_{n}(r)^{2}\right|_{0} ^{1}-\int_{0}^{1} 2 r R_{n}(r)^{2} d r\right]=0
$$

where we integrated by parts in the second integral. Since $R_{n}(1)=0$, we get

$$
R_{n}^{\prime}(1)^{2}-\lambda_{n}^{2} \int_{0}^{1} 2 r R_{n}(r)^{2} d r=0
$$

that is,

$$
\begin{equation*}
\int_{0}^{1} r R_{n}(r)^{2} d r=\frac{1}{2 \lambda_{n}^{2}} R_{n}^{\prime}(1)^{2}=\frac{1}{2} J_{0}^{\prime}\left(\lambda_{n}\right)^{2}=\frac{1}{2} J_{1}\left(\lambda_{n}\right)^{2} \tag{***}
\end{equation*}
$$

for $n=1,2,3, \ldots$. Where we have used the identity $J_{0}^{\prime}(r)=-J_{1}(r)$.
Now we can use the initial conditions to determine the coefficients in the solution ($*$). Setting $t=0$, multiplying by $r R_{m}(r)$, and integrating from 0 to 1 , we get

$$
\int_{0}^{1} r f(r) R_{m}(r) d r=A_{m} \int_{0}^{1} r R_{m}(r)^{2} d r=A_{m} \frac{J_{1}\left(\lambda_{m}\right)^{2}}{2}
$$

and since $f(r)=1-r^{2}$, we have

$$
A_{m}=\frac{2}{J_{1}\left(\lambda_{m}\right)^{2}} \int_{0}^{1} r\left(1-r^{2}\right) R_{m}(r) d r=\frac{2}{J_{1}\left(\lambda_{m}\right)^{2}} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\lambda_{m} r\right) d r
$$

for $m=1,2,3, \ldots$.
If we make the substitution $s=\lambda_{m} r$ in the last integral, we get

$$
\int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\lambda_{m} r\right) d r=\frac{1}{\lambda_{m}^{4}} \int_{0}^{\lambda_{m}} s\left(\lambda_{m}^{2}-s^{2}\right) J_{0}(s) d s
$$

and integrating by parts with $u=\lambda_{m}^{2}-s^{2}$ and $d v=J_{0}(s) s d s$ so that

$$
v=\int s J_{0}(s) d s=s J_{1}(s)
$$

we get

$$
\int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\lambda_{m} r\right) d r=\frac{2}{\lambda_{m}^{4}} \int_{0}^{\lambda_{m}} J_{1}(s) s^{2} d s=\left.\frac{2}{\lambda_{m}^{4}} s^{2} J_{2}(s)\right|_{0} ^{\lambda_{m}}=\frac{2}{\lambda_{m}^{2}} J_{2}\left(\lambda_{m}\right),
$$

for $m=1,2,3, \ldots$, where we used the identity

$$
\int x^{p+1} J_{p}(x) d x=x^{p+1} J_{p+1}(x)+C .
$$

Therefore,

$$
A_{m}=\frac{2}{J_{1}\left(\lambda_{m}\right)^{2}} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\lambda_{m} r\right) d r=\frac{4 J_{2}\left(\lambda_{m}\right)}{\lambda_{m}^{2} J_{1}\left(\lambda_{m}\right)^{2}}
$$

and finally, since λ_{m} is a zero of J_{0}, from the identity

$$
J_{0}(x)+J_{2}(x)=\frac{2}{x} J_{1}(x)
$$

we have

$$
A_{m}=\frac{8}{\lambda_{m}^{3} J_{1}\left(\lambda_{m}\right)}
$$

for $m=1,2,3, \ldots$, and

$$
1-r^{2}=f(r)=\sum_{n=1}^{\infty} \frac{8}{\lambda_{m}^{3} J_{1}\left(\lambda_{m}\right)} J_{0}\left(\lambda_{n} r\right), \quad 0<r<1
$$

is the Fourier-Bessel expansion for the initial displacement.
In order to compute the B_{n} 's, we differentiate $(*)$ with respect to t and then set $t=0$ to get

$$
1=g(r)=\frac{\partial u}{\partial t}(r, 0)=\sum_{n=1}^{\infty} 10 \lambda_{n} B_{n} J_{0}\left(\lambda_{n} r\right)
$$

and a similar argument to that above shows that

$$
B_{m}=\frac{1}{5 \lambda_{m}^{2} J_{1}\left(\lambda_{m}\right)}
$$

for $m=1,2,3, \ldots$, therefore the solution is

$$
u(r, t)=\sum_{n=1}^{\infty} \frac{J_{0}\left(\lambda_{n} r\right)}{5 \lambda_{n}^{3} J_{1}\left(\lambda_{n}\right)}\left[40 \cos \left(10 \lambda_{n} t\right)+\lambda_{n} \sin \left(10 \lambda_{n} t\right)\right]
$$

for $0 \leq r \leq 1$, and $t \geq 0$.
Question 2. [p 206, \#4]
Solve the vibrating membrane problem given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right), & 0<r<1, \quad t>0 \\
u(a, t)=0, & t>0 \\
u(r, 0)=0, & 0<r<1 \\
\frac{\partial u}{\partial t}(r, 0)=J_{0}\left(\alpha_{3} r\right), & 0<r<1
\end{array}
$$

You may use formula (11) from the text.
Solution: As in the previous problem, the solution is

$$
u(r, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) J_{0}\left(\lambda_{n} r\right)
$$

where λ_{n} is the $n^{\text {th }}$ positive root of the Bessel function J_{0}.

In this case, however, $u(r, 0)=f(r)=0$ for $0<r<1$, so that $A_{n}=0$ for all $n \geq 1$. We use the initial condition

$$
\frac{\partial u}{\partial t}(r, 0)=J_{0}\left(\alpha_{3} r\right), \quad 0<r<1
$$

and the orthogonality to determine the B_{n} 's, as in the previous problem, we have

$$
B_{n}=\frac{2}{\lambda_{n} J_{1}\left(\lambda_{n}\right)^{2}} \int_{0}^{1} r J_{0}\left(\lambda_{3} r\right) J_{0}\left(\lambda_{n} r\right) d r=0
$$

for all $n \neq 3$, while for $n=3$, we have

$$
B_{3}=\frac{2}{\lambda_{3} J_{1}\left(\lambda_{3}\right)^{2}} \int_{0}^{1} r J_{0}\left(\lambda_{3} r\right)^{2} d r=\frac{2}{\lambda_{3} J_{1}\left(\lambda_{3}\right)^{2}} \cdot \frac{1}{2} J_{1}\left(\lambda_{3}\right)^{2}=\frac{1}{\lambda_{3}}
$$

and the solution is

$$
u(r, t)=\frac{1}{\lambda_{3}} J_{0}\left(\lambda_{3} r\right) \sin \lambda_{3} t
$$

for $0 \leq r \leq 1$, and $t \geq 0$.
Question 3. [p 331, \#2]
If $f(x)$ is an even function and $g(x)$ is an odd function, show that the set of functions $\{f(x), g(x)\}$ is orthogonal with respect to the weight function

$$
w(x)=1
$$

on any symmetric interval $[-a, a]$ containing 0 .
Solution: We have

$$
\begin{aligned}
\int_{-a}^{a} f(x) g(x) d x & =\underbrace{\int_{-a}^{0} f(x) g(x) d x}_{t=-x}+\int_{0}^{a} f(x) g(x) d x \\
& =\int_{0}^{a} f(-t) g(-t) d t+\int_{0}^{a} f(x) g(x) d x \\
& =-\int_{0}^{a} f(t) g(t) d t+\int_{0}^{a} f(x) g(x) d x \\
& =0
\end{aligned}
$$

and therefore f and g are orthogonal on the symmetric interval $[-a, a]$ with respect to the weight function $w(x)=1$.

Question 4. [p 332, \#6]

Show that the set of Laguerre polynomials $\left\{1,1-x, \frac{1}{2}\left(2-4 x+x^{2}\right)\right\}$ is orthogonal with respect to the weight function

$$
w(x)=e^{-x}
$$

on the interval $[0, \infty)$.

Solution: Recall that for $n \geq 0$ we have

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

and therefore

$$
\begin{gathered}
<1,1-x>=\int_{0}^{\infty}(1-x) e^{-x} d x=0!-1!=0 \\
<1, \frac{1}{2}\left(2-4 x+x^{2}\right)>=0!-2 \cdot 1!+\frac{1}{2} \cdot 2!=1-2+1=0
\end{gathered}
$$

and finally,

$$
\begin{aligned}
<1-x, \frac{1}{2}\left(2-4 x+x^{2}\right)> & =<1, \frac{1}{2}\left(2-4 x+x^{2}\right)>-<x, \frac{1}{2}\left(2-4 x+x^{2}\right)> \\
& =0-\left(1!-2 \cdot 2!+\frac{3!}{2}\right) \\
& =-1+4-3 \\
& =0,
\end{aligned}
$$

so the set of functions does form an orthogonal set on the interval $[0, \infty)$ with respect to the weight function $w(x)=e^{-x}$.

Question 5. [p 332, \#8]
Is the set of functions $\left\{\frac{1}{2}\left(2-4 x+x^{2}\right),-12 x+8 x^{3}\right\}$ orthogonal with respect to the weight function

$$
w(x)=e^{-x}
$$

on the interval $[0, \infty)$?
Solution: These functions are not orthogonal with respect to the weight function $w(x)=e^{-x}$ on the interval $[0, \infty)$, in fact,

$$
\begin{aligned}
<8 x^{3}-12 x, \frac{1}{2}\left(x^{2}-4 x+2\right)> & =2<2 x^{3}-3 x, x^{2}-4 x+2> \\
& =2 \int_{0}^{\infty}\left(2 x^{3}-3 x\right)\left(x^{2}-4 x+2\right) e^{-x} d x \\
& =2 \int_{0}^{\infty}\left(2 x^{5}-8 x^{4}+x^{3}+12 x^{2}-6 x\right) e^{-x} d x \\
& =2[2 \cdot 5!-8 \cdot 4!+3!+12 \cdot 2!-6 \cdot 1!] \\
& =2 \cdot 72=144 .
\end{aligned}
$$

As an exercise, show that the first five Laguerre polynomials in the orthogonal basis with respect to this weight function on $[0, \infty)$ are given by

$$
\begin{aligned}
& L_{0}(x)=1, \quad L_{1}(x)=x-1, \quad L_{2}(x)=x^{2}-4 x+2 \\
& L_{3}(x)=x^{3}-9 x^{2}+18 x-6, \quad L_{4}(x)=x^{4}-16 x^{3}+72 x^{2}-96 x+24
\end{aligned}
$$

Question 6. [p 344, \#6]

Given the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}+\left(\frac{1+\lambda x}{x}\right) y=0 \\
y(1)=0 \\
y(2)=0
\end{gathered}
$$

on the interval [1,2], put the equation in Sturm-Liouville form and decide whether the problem is regular or singular.
Solution: We can rewrite the boundary value problem in the form

$$
\begin{gathered}
\left(x y^{\prime}\right)^{\prime}+\lambda x y=0 \\
y(1)=0 \\
y(2)=0
\end{gathered}
$$

and here $p(x)=x, p^{\prime}(x)=1, q(x)=0, r(x)=x$ are all continuous on the interval [1, 2], with $p(x)>0$ and $r(x)>0$ for all $x \in[1,2]$. Also, $c_{1}=d_{1}=1$ and $c_{2}=d_{2}=0$, so this is a regular Sturm-Liouville problem on the interval $[1,2]$.

Question 7. [p 344, \#8]

Given the boundary value problem

$$
\begin{gathered}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+(1+\lambda x) y=0 \\
y(-1)=0 \\
y(1)=0
\end{gathered}
$$

on the interval $[-1,1]$, put the equation in Sturm-Liouville form and decide whether the problem is regular or singular.

Solution: We can rewrite the boundary value problem in the form

$$
\begin{gathered}
\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+(1+\lambda x) y=0 \\
y(-1)=0 \\
y(1)=0
\end{gathered}
$$

and here $p(x)=1-x^{2}, p^{\prime}(x)=-2 x, q(x)=1, r(x)=x$ are all continuous on the interval $[-1,1]$. Also, $c_{1}=d_{1}=1$ and $c_{2}=d_{2}=0$.
However, $p(x)=0$ at the endpoints of the interval $[-1,1]$, and $r(0)=0$, so this is a singular Sturm-Liouville problem.

Question 8. [p 344, \#14]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \\
y(-\pi)=y(\pi) \\
y^{\prime}(-\pi)=y^{\prime}(\pi)
\end{gathered}
$$

Solution:

Case 1: If $\lambda=0$, then the equation $y^{\prime \prime}=0$ has general solution $y(x)=A x+B$ with $y^{\prime}=A$. The first periodicity condition gives

$$
-A \pi+B=A \pi+B
$$

so that $A=0$. The second periodicity condition is then automatically satisfied, so there is one nontrivial solution in this case. The eigenvalue is $\lambda=0$ with corresponding eigenfunction $y_{0}=1$.
Case 2: If $\lambda<0$, say $\lambda=-\mu^{2}$ where $\mu \neq 0$, then the differential equation becomes $y^{\prime \prime}-\mu^{2} y=0$, and has general solution $y(x)=A \cosh \mu x+B \sinh \mu x$ with $y^{\prime}=\mu A \sinh \mu x+\mu B \cosh \mu x$. The first periodicity condition gives

$$
A \cosh \mu \pi-B \sinh \mu \pi=A \cosh \mu \pi+B \sinh \mu \pi
$$

since $\cosh \mu x$ is an even function and $\sinh \mu x$ is an odd function. We have $2 B \sinh \mu \pi=0$, and since $\sinh \mu \pi \neq 0$, then $B=0$. The solution is then $y=A \cosh \mu x$, and the second periodicity condition gives

$$
-\mu A \sinh \mu \pi=\mu A \sinh \mu \pi
$$

so that $2 \mu A \sinh \mu \pi=0$, and since $\mu \neq 0$, then $\sinh \mu \pi \neq 0$, so we must have $A=0$. Therefore, there are no nontrivial solutions in this case.

Case 3: If $\lambda>0$, say $\lambda=\mu^{2}$ where $\mu \neq 0$, the differential equation becomes $y^{\prime \prime}+\mu^{2} y=0$, and has general solution $y(x)=A \cos \mu x+B \sin \mu x$, with $y^{\prime}(x)=-A \mu \sin \mu x+B \mu \cos \mu x$.
Applying the first periodicity condition, we have

$$
y(-\pi)=A \cos \mu \pi-B \sin \mu \pi=A \cos \mu \pi+B \sin \mu \pi=y(\pi)
$$

so that $2 B \sin \mu \pi=0$.
Applying the second periodicity condition, we have

$$
y^{\prime}(-\pi)=A \mu \sin \mu \pi+B \mu \cos \mu \pi=-A \mu \sin \mu \pi+B \mu \cos \mu \pi=y^{\prime}(\pi)
$$

so that $2 A \sin \mu \pi=0$. Therefore, the following equations must hold simultaneously:

$$
\begin{aligned}
& A \sin \mu \pi=0 \\
& B \sin \mu \pi=0
\end{aligned}
$$

In order to get a nontrivial solution, we must have either $A \neq 0$, or $B \neq 0$, and if the equations hold, we must have $\sin \mu \pi=0$. Therefore, μ must be an integer, so that the eigenvalues are

$$
\lambda_{n}=\mu_{n}^{2}=n^{2}
$$

for $n=1,2,3 \ldots$, and the eigenfunctions corresponding to these eigenvalues are $\sin n x$ and $\cos n x$ for $n=1,2,3 \ldots$

Question 9. [p 344, \#16]

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \\
y(0)+y^{\prime}(0)=0 \\
y(2 \pi)=0
\end{gathered}
$$

Solution:

Case 1: If $\lambda=0$, then the equation $y^{\prime \prime}=0$ has general solution $y(x)=A x+B$ with $y^{\prime}=A$. The first boundary condition gives

$$
B+A=0
$$

so that $A=-B$. The second boundary condition gives

$$
2 \pi A+B=0
$$

so that $(2 \pi-1) A=0$, and $A=-B=0$, so there are no nontrivial solutions in this case.
Case 2: If $\lambda<0$, say $\lambda=-\mu^{2}$ where $\mu \neq 0$, then the differential equation becomes $y^{\prime \prime}-\mu^{2} y=0$, and has general solution $y(x)=A \cosh \mu x+B \sinh \mu x$ with $y^{\prime}=\mu A \sinh \mu x+\mu B \cosh \mu x$. The first boundary condition gives

$$
A+\mu B=0
$$

so that $A=-\mu B$. The second boundary condition gives

$$
A \cosh 2 \pi \mu+B \sinh 2 \pi \mu=0
$$

and since $\cosh 2 \pi \mu \neq 0$, then

$$
B(\tanh 2 \pi \mu-\mu)=0
$$

and in order to get nontrivial solutions we need

$$
\tanh 2 \pi \mu=\mu
$$

The graphs of $f(\mu)=\tanh 2 \pi \mu$ and $g(\mu)=\mu$ intersect at the origin, $\mu=0$, and since

$$
\lim _{\mu \rightarrow \infty} \tanh 2 \pi \mu=1 \quad \text { and } \quad \lim _{\mu \rightarrow-\infty} \tanh 2 \pi \mu=-1
$$

and

$$
f^{\prime}(0)=2 \pi>1=g^{\prime}(0)
$$

they intersect again in exactly two more points $\mu= \pm \mu_{0}$, where μ_{0} is the positive root of the equation $\tanh 2 \pi \mu=\mu$. There is one nontrivial solution in this case, with eigenvalue $\lambda=-\left(\mu_{0}\right)^{2}$ and the corresponding eigenfunction is

$$
\sinh \mu_{0} x-\mu_{0} \cosh \mu_{0} x
$$

Case 3: If $\lambda>0$, say $\lambda=\mu^{2}$ where $\mu \neq 0$, then the differential equation becomes $y^{\prime \prime}+\mu^{2} y=0$, and has general solution $y(x)=A \cos \mu x+B \sin \mu x$ with $y^{\prime}=-\mu A \sin \mu x+\mu B \cos \mu x$. The first boundary condition gives

$$
y(0)+y^{\prime}(0)=A+\mu B=0
$$

so that $A=-\mu B$. The second boundary condition gives

$$
y(2 \pi)=A \cos 2 \pi \mu+B \sin 2 \pi \mu=0
$$

and so

$$
B[\sin 2 \pi \mu-\mu \cos 2 \pi \mu]=0
$$

and the eigenvalues are $\lambda_{n}=\mu_{n}^{2}$, where μ_{n} is the $n^{\text {th }}$ positive root of the equation $\tan 2 \pi \mu=\mu$. The corresponding eigenfunctions are

$$
y_{n}=\sin \mu_{n} x-\mu_{n} \cos \mu_{n} x
$$

for $n=1,2,3, \ldots$.

Question 10. [p 344, \#22]

Show that the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}-\lambda y=0 \\
y(0)+y^{\prime}(0)=0 \\
y(1)+y^{\prime}(1)=0
\end{gathered}
$$

has one positive eigenvalue. Does this contradict Theorem 1?

Solution:

Case 1: If $\lambda=0$, the differential equation $y^{\prime \prime}=0$ has general solution $y=A x+B$, with $y^{\prime}=A$. Applying the first boundary condition, we have

$$
B+A=0
$$

so that $B=-A$. Applying the second boundary condition, we have

$$
A+B+A=0
$$

so that $B=-2 A$, and therefore $B=2 B$, and $B=A=0$. Therefore, there are no nontrivial solutions in this case.

Case 2: If $\lambda<0$, say $\lambda=-\mu^{2}$ where $\mu \neq 0$, the differential equation becomes $y^{\prime \prime}+\mu^{2} y=0$ and has general solution $y=A \cos \mu x+B \sin \mu x$, with $y^{\prime}=-\mu A \sin \mu x+\mu B \cos \mu x$. The first boundary condition gives

$$
y(0)+y^{\prime}(0)=A+\mu B=0
$$

so that $A=-\mu B$.
The second boundary condition gives

$$
y(1)+y^{\prime}(1)=A \cos \mu+B \sin \mu-\mu A \sin \mu+\mu B \cos \mu=0
$$

that is,

$$
(\cos \mu-\mu \sin \mu) A+(\sin \mu+\mu \cos \mu) B=0
$$

The system of linear equations for A and B

$$
\begin{aligned}
A+\mu B & =0 \\
(\cos \mu-\mu \sin \mu) A+(\sin \mu+\mu \cos \mu) B & =0
\end{aligned}
$$

has nontrivial solutions if and only if

$$
\left(1+\mu^{2}\right) \sin \mu=0
$$

that is if and only if $\sin \mu=0$. The eigenvalues are $\lambda_{n}=-\left(\mu_{n}\right)^{2}=-n^{2}$, with corresponding eigenfunctions

$$
y_{n}=\sin n x-n \cos n x
$$

for $n=1,2,3, \ldots$.
Case 3: If $\lambda>0$, say $\lambda=\mu^{2}$, the differential equation becomes $y^{\prime \prime}-\mu^{2} y=0$ and has general solution $y=A \cosh \mu x+B \sinh \mu x$, with $y^{\prime}=\mu A \sinh \mu x+\mu B \cosh \mu x$. The first boundary condition gives

$$
y(0)+y^{\prime}(0)=A+\mu B=0
$$

The second boundary condition gives

$$
y(1)+y^{\prime}(1)=A \cosh \mu+B \sinh \mu+\mu A \sinh \mu+\mu B \cosh \mu=0
$$

that is,

$$
(\cosh \mu+\mu \sinh \mu) A+(\sinh \mu+\mu \cosh \mu) B=0
$$

The system of linear equations for A and B

$$
\begin{aligned}
A+\mu B & =0 \\
(\cosh \mu+\mu \sinh \mu) A+(\sinh \mu+\mu \cosh \mu) B & =0
\end{aligned}
$$

has nontrivial solutions if and only if

$$
\left(1-\mu^{2}\right) \sinh \mu=0
$$

and since $\sinh \mu \neq 0$, if and only if $1-\mu^{2}=0$, that is, if and only if $\mu= \pm 1$.
Therefore, there is only one positive eigenvalue, namely

$$
\lambda=(\pm 1)^{2}=1
$$

with corresponding eigenfunction

$$
y=\sinh x-\cosh x
$$

Note: If $r(x)=-1<0$, then the problem is not a regular Sturm-Liouville problem, and so this does not contradict Theorem 1, since Theorem 1 does not apply.

