MATH 300 Fall 2004
 Advanced Boundary Value Problems I
 Solutions to Assignment 2
 Due: Friday October 8, 2004
 Department of Mathematical and Statistical Sciences
 University of Alberta

Question 1. [p 77, \#26]
Solve the initial value problem

$$
\begin{aligned}
y^{\prime \prime}+9 y & =F(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

where $F(t)$ is the 2π-periodic input function given by its Fourier series $F(t)=\sum_{n=1}^{\infty}\left[\frac{\cos n t}{n^{2}}+(-1)^{n} \frac{\sin n t}{n}\right]$.
Solution: Recall that since the differential equation is a linear equation with constant coefficients, then the general solution to the nonhomogeneous equation is given by

$$
y(t)=y_{h}(t)+y_{p}(t)
$$

where $y_{h}(t)$ is the general solution to the corresponding homogeneous equation and $y_{p}(t)$ is any particular solution to the nonhomogeneous equation.
In order to solve the homogeneous equation

$$
y^{\prime \prime}+9 y=0
$$

we try a solution of the form $y_{h}(t)=e^{\lambda t}$, substituting this into the equation, we obtain

$$
e^{\lambda t}\left(\lambda^{2}+9\right)=0
$$

and since $e^{\lambda t} \neq 0$, then the auxiliary equation is $\lambda^{2}+9=0$, which has roots $\lambda_{1}=3 i$ and $\lambda_{2}=-3 i$. The general solution to the homogeneous equation is therefore

$$
y_{h}(t)=c_{1} \cos 3 t+c_{2} \sin 3 t
$$

where c_{1} and c_{2} are arbitrary constants.
In order to find a particular solution to the nonhomogeneous equation, we use the method of Fourier series and solve the equation

$$
y^{\prime \prime}(t)+9 y(t)=a_{n} \cos n t+b_{n} \sin n t
$$

for $n \geq 0$, where a_{n} and b_{n} are the Fourier coefficients of the driving force $F(t)$.
Note that for $n \neq 3$, from the method of undetermined coefficients, the $n^{\text {th }}$ normal mode of vibration is

$$
y_{n}(t)=\alpha_{n} \cos n t+\beta_{n} \sin n t
$$

where the constants α_{n} and β_{n} are determined from the Fourier coefficients of $F(t)$ to be

$$
\alpha_{0}=0, \quad \alpha_{n}=\frac{1}{n^{2}\left(9-n^{2}\right)}, \quad \beta_{n}=\frac{(-1)^{n}}{n\left(9-n^{2}\right)}
$$

for $n \geq 1, n \neq 3$.

While for $n=3$, the term in the driving force has the same frequency as the natural frequency of the system, and we have to solve the nonhomogeneous equation

$$
y_{3}^{\prime \prime}(t)+9 y_{3}(t)=a_{3} \cos 3 t+b_{3} \sin 3 t
$$

In this case the method of undetermined coefficients suggests a solution of the form

$$
y_{3}(t)=t\left(\alpha_{3} \cos 3 t+\beta_{3} \sin 3 t\right)
$$

In order to determine the constants α_{3} and β_{3}, we substitute this expression into the differential equation

$$
y_{3}^{\prime \prime}+9 y_{3}=a_{3} \cos 3 t+b_{3} \sin 3 t
$$

to obtain

$$
\alpha_{3}=-\frac{b_{3}}{6} \quad \text { and } \quad \beta_{3}=\frac{a_{3}}{6} .
$$

The particular solution to the nonhomogeneous equation can then be written as

$$
y_{p}(t)=\sum_{\substack{n=1 \\ n \neq 3}}^{\infty}\left(\frac{1}{n^{2}\left(9-n^{2}\right)} \cos n t+\frac{(-1)^{n}}{n\left(9-n^{2}\right)} \sin n t\right)+\frac{t}{6}\left(-\frac{1}{3} \cos 3 t+\frac{1}{3^{2}} \sin 3 t\right),
$$

and the general solution to the nonhomogeneous equation is

$$
y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t+\sum_{\substack{n=1 \\ n \neq 3}}^{\infty}\left(\frac{1}{n^{2}\left(9-n^{2}\right)} \cos n t+\frac{(-1)^{n}}{n\left(9-n^{2}\right)} \sin n t\right)+\frac{t}{6}\left(-\frac{1}{3} \cos 3 t+\frac{1}{3^{2}} \sin 3 t\right)
$$

and the constants c_{1} and c_{2} can now be evaluated using the initial conditions $y(0)=y^{\prime}(0)=0$.
Applying the initial conditions, we find

$$
c_{1}=-\sum_{\substack{n=1 \\ n \neq 3}}^{\infty} \frac{1}{n^{2}\left(9-n^{2}\right)} \quad \text { and } \quad c_{2}=\frac{1}{3^{2} \cdot 6}-\frac{1}{3} \sum_{\substack{n=1 \\ n \neq 3}}^{\infty} \frac{(-1)^{n}}{9-n^{2}}
$$

Note: The solution with driving force

$$
F(t)=\sum_{n=1}^{\infty} \frac{\sin n t}{n^{2}}
$$

is also acceptable.
Question 2. [p 107, \#8]
Verify that the function

$$
u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

is a solution to the three dimensional Laplace equation $\quad u_{x x}+u_{y y}+u_{z z}=0$.
Solution: By symmetry, we need only calculate the derivatives with respect to one of the variables, say x, and obtain the other derivatives by permuting the variables. For example,

$$
\frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)=\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

so that

$$
\frac{\partial u}{\partial y}=\frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad \text { and } \quad \frac{\partial u}{\partial z}=\frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

Similarly,

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)=\frac{2 x^{2}-y^{2}-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}
$$

so that

$$
\frac{\partial^{2} u}{\partial y^{2}}=\frac{2 y^{2}-x^{2}-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \quad \text { and } \quad \frac{\partial^{2} u}{\partial z^{2}}=\frac{2 z^{2}-x^{2}-y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}
$$

Therefore,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{\left(2 x^{2}-y^{2}-z^{2}\right)+\left(2 y^{2}-x^{2}-z^{2}\right)+\left(2 z^{2}-x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=0
$$

that is, u satisfies Laplace's equation $\nabla^{2} u=0$.
Question 3. [p 123, \#2]
Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{1}{\pi^{2}} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0 \\
u(x, 0) & =\sin \pi x \cos \pi x, \quad 0<x<1 \\
\frac{\partial u}{\partial t}(x, 0) & =0, \quad 0<x<1
\end{aligned}
$$

using the Method of Separation of Variables.
Solution: As in class, we assume a solution of the form $u(x, t)=X(x) T(t)$ and plug this expression in the differential equation to get

$$
X \cdot T^{\prime \prime}=\frac{1}{\pi^{2}} X^{\prime \prime} \cdot T
$$

and now separate the variables by dividing by $X \cdot T$ to get

$$
\frac{T^{\prime \prime}}{T}=\frac{X^{\prime \prime}}{\pi^{2} X}=-\lambda
$$

Since x and t are independent variables, then λ is a constant, and we have two ordinary differential equations to solve:

$$
X^{\prime \prime}+\lambda \pi^{2} X=0 \quad \text { and } \quad T^{\prime \prime}+\lambda T=0
$$

We can satisfy the two boundary conditions by requiring that $X(0)=0$ and $X(1)=0$, and X must satisfy the ordinary boundary value problem:

$$
\begin{aligned}
X^{\prime \prime}+\lambda \pi^{2} X & =0, \quad 0<x<1 \\
X(0) & =0 \\
X(1) & =0 .
\end{aligned}
$$

The cases $\lambda=0$ and $\lambda<0$ both result in a solution $X(x)=0$ for all $x \in[0,1]$, and the only nontrivial solution arises when $\lambda>0$, say $\lambda=\mu^{2}$, where $\mu \neq 0$. In this case we have to solve the boundary value problem

$$
\begin{aligned}
X^{\prime \prime}+\mu^{2} \pi^{2} X & =0, \quad 0<x<1 \\
X(0) & =0 \\
X(1) & =0 .
\end{aligned}
$$

The general solution to this differential equation is

$$
X(x)=A \cos \mu \pi x+B \sin \mu \pi x
$$

and applying the first boundary condition, we see that $X(0)=A=0$, and the solution is

$$
X(x)=B \sin \mu \pi x
$$

Applying the second boundary condition, we see that $X(1)=B \sin \mu \pi=0$, and in order to get a nontrivial solution we must have $\sin \mu \pi=0$, but this can only happen if $\mu \pi=n \pi$, where n is an integer. For each $n \geq 1$ the solution is

$$
X_{n}(x)=\sin n \pi x
$$

For each integer $n \geq 1$, we can solve the corresponding equation

$$
T^{\prime \prime}+n^{2} T=0
$$

to get

$$
T_{n}(t)=b_{n} \cos n t+b_{n}^{*} \sin n t
$$

for $n \geq 1$.
Now, for each integer $n \geq 1$, the function

$$
u_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)=\sin n \pi x\left(b_{n} \cos n t+b_{n}^{*} \sin n t\right)
$$

satisfies the wave equation and the two boundary conditions:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{1}{\pi^{2}} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0
\end{aligned}
$$

Since the partial differential equation and the two boundary conditions are linear and homogeneous, by the superposition principle, any linear combination of these solutions

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} \sin n \pi x\left(b_{n} \cos n t+b_{n}^{*} \sin n t\right)
$$

is also a solution to the partial differential equation and the boundary conditions.
In order to satisfy the initial conditions, we need

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} n b_{n}^{*} \sin n \pi x \tag{2}
\end{equation*}
$$

and it is clear then that these are just the half-range expansions of the odd periodic extensions of $u(x, 0)$ and $\frac{\partial u}{\partial t}(x, 0)$.

Therefore, from (1) we have

$$
b_{n}=2 \int_{0}^{1} u(x, 0) \sin n \pi x d x
$$

and

$$
n b_{n}^{*}=2 \int_{0}^{1} \frac{\partial u}{\partial t}(x, 0) \sin n \pi x d x
$$

for $n \geq 1$.
Note that $b_{n}^{*}=0$ for all $n \geq 1$, since $\frac{\partial u}{\partial t}(x, 0)=0$ for $0<x<1$.
Also, we have

$$
u(x, 0)=\sin \pi x \cos \pi x=\frac{1}{2} \sin 2 \pi x
$$

so that $u(x, 0)$ is its own Fourier sine series, and

$$
b_{n}= \begin{cases}\frac{1}{2} & \text { if } n=2 \\ 0 & \text { if } n \neq 2\end{cases}
$$

Therefore, the solution is

$$
u(x, t)=\frac{1}{2} \sin 2 \pi x \cos 2 t
$$

for $0 \leq x \leq 1, t \geq 0$.
Question 4. [p 123, \#4]
Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0 \\
u(x, 0) & =\sin \pi x+\frac{1}{2} \sin 3 \pi x+3 \sin 7 \pi x, \quad 0<x<1 \\
\frac{\partial u}{\partial t}(x, 0) & =\sin 2 \pi x, \quad 0<x<1
\end{aligned}
$$

using the Method of Separation of Variables.
Solution: As in the previous problem, the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} \sin n \pi x\left(b_{n} \cos n \pi t+b_{n}^{*} \sin n \pi t\right)
$$

where the coefficients are to be determined using the initial conditions. Differentiating, we have

$$
\frac{\partial u}{\partial t}(x, t)=\sum_{n=1}^{\infty} \sin n \pi x\left(-n \pi b_{n} \sin n \pi t+n \pi b_{n}^{*} \cos n \pi t\right),
$$

and setting $t=0$, we get

$$
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} n \pi b_{n}^{*} \sin n \pi x
$$

and again these are just the Fourier sine series of $f(x)$ and $g(x)$, the initial displacement and initial velocity.

From the first initial condition

$$
u(x, 0)=\sin \pi x+\frac{1}{2} \sin 3 \pi x+3 \sin 7 \pi x
$$

we see that

$$
b_{1}=1, \quad b_{3}=\frac{1}{2}, \quad b_{7}=3
$$

and $b_{n}=0$ for all other values of n.
From the second initial condition

$$
\frac{\partial u}{\partial t}(x, 0)=\sin 2 \pi x
$$

so that

$$
b_{n}^{*}= \begin{cases}\frac{1}{2 \pi} & \text { if } n=2 \\ 0 & \text { if } n \neq 2\end{cases}
$$

Therefore, the solution is

$$
u(x, t)=\sin \pi x \cos \pi t+\frac{1}{2 \pi} \sin 2 \pi x \sin 2 \pi t+\frac{1}{2} \sin 3 \pi x \cos 3 \pi t+3 \sin 7 \pi x \cos 7 \pi t
$$

for $0<x<1, t>0$.
Question 5. [p 124, \#12]
Damped vibrations of a string. In the presence of resistance proportional to velocity, the one dimensional wave equation becomes

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 k \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<L, t>0
$$

Solve this equation subject to the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0 \quad \text { for all } \quad t>0
$$

and the initial conditions

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x) \quad \text { for } \quad 0<x<L
$$

Solution:

(a) Assume a product solution of the form $u(x, t)=X(x) T(t)$, and plug it into the equation to get

$$
X T^{\prime \prime}+2 k X T^{\prime}=c^{2} X^{\prime \prime} T
$$

and now separate the variables by dividing by $c^{2} X T$ to get

$$
\frac{T^{\prime \prime}}{c^{2} T}+\frac{2 k T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}
$$

Since x and t are independent variables and the left hand side depends only on t, while the right hand side depends only on x, then both sides must be constant, so that

$$
\frac{T^{\prime \prime}}{c^{2} T}+\frac{2 k T^{\prime}}{c^{2} T}=\lambda \quad \text { and } \quad \frac{X^{\prime \prime}}{X}=\lambda
$$

so that x and T must satisfy the following ordinary differential equations

$$
\begin{aligned}
X^{\prime \prime}-\lambda X & =0 \\
T^{\prime \prime}+2 k T^{\prime}-\lambda c^{2} T & =0
\end{aligned}
$$

Now, we can satisfy the boundary conditions by requiring that $X(0)=X(L)=0$, so that X must satisfy the boundary value problem

$$
\begin{aligned}
X^{\prime \prime}-\lambda X & =0 \\
X(0) & =0 \\
X(L) & =0
\end{aligned}
$$

As in the previous problems, we only get a nontrivial solution if the separation constant λ is negative, say $\lambda=-\mu^{2}$ where $\mu \neq 0$, and in this case, the equations for X and T become

$$
\begin{gathered}
X^{\prime \prime}+\mu^{2} X=0, \quad X(0)=0, \quad X(L)=0 \\
T^{\prime \prime}+2 k T^{\prime}+(\mu c)^{2} T=0
\end{gathered}
$$

where $\mu \neq 0$ is the separation constant.
(b) The general solution to the equation

$$
X^{\prime \prime}+\mu^{2} X=0
$$

is given by

$$
X(x)=A \cos \mu x+B \sin \mu x
$$

where the constants are determined from the boundary conditions. Since $X(0)=0$, then we must have $A=0$; and since $X(L)=0$, the only nontrivial solutions arise when $\sin \mu L=0$, and this happens if and only if $\mu L=n \pi$, where n is an integer.

Therefore, the only nontrivial solutions to the boundary value problem for X occur for

$$
\mu=\mu_{n}=\frac{n \pi}{L}
$$

and the solutions are

$$
X=X_{n}=\sin (n \pi x / L)
$$

for $n=1,2, \ldots$.
(c) For each integer $n \geq 1$, the corresponding equation for T is

$$
T^{\prime \prime}+2 k T^{\prime}+(n \pi c / L)^{2} T=0
$$

a second order, linear, homogeneous, constant coefficient equation which we know how to solve. Assuming a solution of the form $T(t)=e^{\lambda t}$, and plugging this into the differential equation we get the characteristic equation

$$
\lambda^{2}+2 k \lambda+\frac{n^{2} \pi^{2} c^{2}}{L^{2}}=0
$$

and the roots of this quadratic equation are

$$
\lambda_{n, 1}=-k+\sqrt{k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}} \quad \text { and } \quad \lambda_{n, 2}=-k-\sqrt{k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}}
$$

In order to find the corresponding solutions $T_{n}(t)$, we need to consider three cases, according to whether $\sqrt{k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}}$ is zero, positive or negative.
Case 1: $k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}=0$. In this case, we have equal real roots, and the solution is

$$
T_{n}(t)=e^{-k t}\left(a_{n}+b_{n} t\right)
$$

where $k=\frac{n \pi c}{L}>0$.
Case 2: $k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}>0$. In this case, we have two distinct real roots, and the solution is

$$
T_{n}(t)=e^{-k t}\left(a_{n} \cosh \lambda_{n} t+b_{n} \sinh \lambda_{n} t\right)
$$

where $\lambda_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}}$.
Case 3: $k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}}<0$. In this case, we have two distinct imaginary roots, and the solution is

$$
T_{n}(t)=e^{-k t}\left(a_{n} \cos \lambda_{n} t+b_{n} \sin \lambda_{n} t\right)
$$

where $\lambda_{n}=\sqrt{\frac{n^{2} \pi^{2} c^{2}-k^{2}}{L^{2}}}$.
(d) Since the partial differential equation and the boundary conditions are linear and homogeneous, then we can use the superposition principle to write the solution $u(x, t)$ as a linear combination of the solutions $u_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)$ that we found in part (c).
If $\frac{k L}{\pi c}$ is not a positive integer, then

$$
k^{2}-\frac{n^{2} \pi^{2} c^{2}}{L^{2}} \neq 0
$$

and either $1 \leq n<\frac{k L}{\pi c}$, or $n>\frac{k L}{\pi c}$, so we are in Case 2 or Case 3 , and the solution is

$$
\begin{aligned}
u(x, t) & =e^{-k t} \sum_{1 \leq n<k L / \pi c} \sin (n \pi x / L)\left(a_{n} \cosh \lambda_{n} t+b_{n} \sinh \lambda_{n} t\right) \\
& +e^{-k t} \sum_{k L / \pi c<n<\infty} \sin (n \pi x / L)\left(a_{n} \cos \lambda_{n} t+b_{n} \sin \lambda_{n} t\right)
\end{aligned}
$$

where these sums run over integers only, and $\lambda_{n}=\sqrt{\left|k^{2}-(n \pi c / L)^{2}\right|}$.
Also, to satisfy the initial conditions, the a_{n} are the Fourier sine coefficients for the odd periodic extension of $f(x)$, that is,

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x
$$

for $n=1,2, \ldots$.
If we differentiate this expression for $u(x, t)$ with respect to t, and set $t=0$, then we see that $-k a_{n}+\lambda_{n} b_{n}$ are just the Fourier sine coefficients of the odd periodic extension of $g(x)$, that is,

$$
-k a_{n}+\lambda_{n} b_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin (n \pi x / L) d x
$$

for $n=1,2, \ldots$.
(e) In $\frac{k L}{\pi c}$ is a positive integer, then we have to add the corresponding term in the sum when the index n is equal to $\frac{k L}{\pi c}$. In this case, if $n_{0}=\frac{k L}{\pi c}$, the solution is as in (d) with the one additional term

$$
\sin (k x / c)\left(a_{k L / \pi c} e^{-k t}+b_{k L / \pi c} t e^{-k t}\right)
$$

with a_{n} and b_{n} as in (d), except that $b_{k L / \pi c}$ is determined from the equation

$$
-k a_{k L / \pi c}+b_{k L / \pi c}=\frac{2}{L} \int_{0}^{L} g(x) \sin (k x / c) d x
$$

Question 6. [p 133, \#4]
Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0 \\
u(x, 0) & =0, \quad 0<x<1, \\
\frac{\partial u}{\partial t}(x, 0) & =1, \quad 0<x<1 .
\end{aligned}
$$

Solution: D'Alembert's solution to the wave equation is

$$
u(x, t)=\frac{1}{2}\left[f^{*}(x-c t)+f^{*}(x+c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g^{*}(s) d s
$$

where f^{*} and g^{*} are the the odd 2-periodic extensions of f and g.
For this problem, we have $c=1$, and $f(x)=0$ for $0<x<1$, so that $f^{*}(x)=0$ for all $x \in \mathbb{R}$.
Also, we have $g(x)=1$ for $0<x<1$, so that

$$
g^{*}(x)=\left\{\begin{array}{rlr}
1 & \text { for } & 0<x<1 \\
-1 & \text { for } & -1<x<0
\end{array}\right.
$$

and $g^{*}(x+2)=g^{*}(x)$ otherwise.
An antiderivative of $g^{*}(x)$ on the interval $[-1,1]$ is given by

$$
G(x)=\left\{\begin{array}{rlr}
x & \text { for } & 0<x<1 \\
-x & \text { for } & -1<x<0
\end{array}\right.
$$

and $G(x+2)=G(x)$ otherwise.
Therefore, the solution is

$$
u(x, t)=\frac{1}{2}[G(x+t)-G(x-t)]
$$

where G is as above.

Question 7. [p 133, \#8]

Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0 \\
u(x, 0) & =0, \quad 0<x<1 \\
\frac{\partial u}{\partial t}(x, 0) & =\sin \pi x, \quad 0<x<1
\end{aligned}
$$

Solution: As in the previous problem d'Alembert's solution to the wave equation is

$$
u(x, t)=\frac{1}{2}\left[f^{*}(x-c t)+f^{*}(x+c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g^{*}(s) d s
$$

where f^{*} and g^{*} are the the odd 2 -periodic extensions of f and g.
Again, for this problem, we have $c=1$, and $f(x)=0$ for $0<x<1$, so that $f^{*}(x)=0$ for all $x \in \mathbb{R}$.
Also, we have $g(x)=\sin \pi x$ for $0<x<1$, so that

$$
g^{*}(x)=\sin \pi x
$$

for $x \in \mathbb{R}$.
An antiderivative of $g^{*}(x)$ is given by

$$
G(x)=-\frac{1}{\pi} \cos \pi x
$$

for $x \in \mathbb{R}$.

$$
u(x, t)=\frac{1}{2 \pi}[\sin \pi(x-t)-\sin \pi(x+t)]=-\frac{1}{\pi} \cos \pi x \sin \pi t
$$

Question 8. [p 134, \#16]
D'Alembert's solution for zero initial velocity. Show that the solution to the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(L, t) & =0, \quad t>0 \\
u(x, 0) & =f(x), \quad 0<x<L \\
\frac{\partial u}{\partial t}(x, 0) & =0, \quad 0<x<L
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{1}{2} \sum_{n=1}^{\infty} b_{n}[\sin (n \pi(x-c t) / L)+\sin (n \pi(x+c t) / L)]
$$

where $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x, n=1,2, \ldots$.

Solution: We showed in class that the solution to this problem is given by

$$
u(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x / L)\left(b_{n} \cos (n \pi c t / L)+b_{n}^{*} \sin (n \pi c t / L)\right)
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x \quad \text { and } \quad b_{n}^{*}=\frac{2}{n \pi c} \int_{0}^{L} g(x) \sin (n \pi x / L) d x
$$

for $n \geq 1$.
Since $g(x)=0$ for $0<x<L$, then $b_{n}^{*}=0$ for all $n \geq 1$, and the solution is given by

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L) \cos (n \pi c t / L)
$$

and since

$$
\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]
$$

then

$$
\begin{equation*}
u(x, t)=\frac{1}{2} \sum_{n=1}^{\infty} b_{n}[\sin (n \pi(x-c t) / L)+\sin (n \pi(x+c t) / L)] \tag{*}
\end{equation*}
$$

where $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x$.
Now, if f^{*} is the odd 2 L-periodic extension of f, then the Fourier series for f converges to f^{*} at all points of continuity of f^{*}, so that

$$
f^{*}(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L)
$$

and therefore, from $(*)$ we have

$$
u(x, t)=\frac{1}{2}\left[f^{*}(x-c t)+f^{*}(x+c t)\right] .
$$

Question 9. [p 144, \#2]

Solve the boundary value problem for the one dimensional heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(\pi, t) & =0, \quad t>0 \\
u(x, 0) & =30 \sin x, \quad 0<x<\pi
\end{aligned}
$$

and give a brief physical explanation of the problem.
Solution: Using separation of variables as in class, we obtain the solution ($c=1$ here)

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} t} \sin n x
$$

where $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$ for $n \geq 1$.

Now,

$$
u(x, 0)=f(x)=30 \sin x
$$

for $0<x<\pi$, that is, $f(x)$ is its own Fourier sine series, so that $b_{1}=30$, and $b_{n}=0$ for all $n \geq 2$. The solution is

$$
u(x, t)=30 e^{-t} \sin x
$$

and this gives the temperature in a bar whose sides are insulated and whose ends $x=0$ and $x=\pi$ are kept at 0 temperature, with an initial temperature distribution given by $u(x, 0)=30 \sin x, 0<x<\pi$.

Question 10. [p 144, \#6]
Solve the boundary value problem for the one dimensional heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t) & =0, \quad t>0 \\
u(1, t) & =0, \quad t>0 \\
u(x, 0) & =e^{-x}, \quad 0<x<1
\end{aligned}
$$

and give a brief physical explanation of the problem.
Solution: After separating variables, applying the initial conditions, and using the superposition principle, we obtain the solution

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin n \pi x
$$

where

$$
b_{n}=2 \int_{0}^{1} e^{-x} \sin n \pi x d x
$$

for $n \geq 1$.
Integrating by parts, we get

$$
\begin{aligned}
\int_{0}^{1} e^{-x} \sin n \pi x d x & =-\left.\frac{e^{-x}}{1+n^{2} \pi^{2}}(\sin n \pi x+n \pi \cos n \pi x)\right|_{0} ^{1} \\
& =\frac{n \pi}{1+n^{2} \pi^{2}}\left[1+(-1)^{n+1} e^{-1}\right]
\end{aligned}
$$

so that

$$
u(x, t)=2 \pi \sum_{n=1}^{\infty} \frac{n}{1+n^{2} \pi^{2}}\left[1+(-1)^{n+1} e^{-1}\right] e^{-n^{2} \pi^{2} t} \sin n \pi x
$$

and this gives the temperature in a bar whose sides are insulated and whose ends $x=0$ and $x=1$ are kept at 0 temperature, with an initial temperature distribution given by $u(x, 0)=e^{-x}, 0<x<1$.

