

MATH 300 Fall 2004 Advanced Boundary Value Problems I Solutions to Assignment 2 Due: Friday October 8, 2004

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 77, #26]

Solve the initial value problem

$$y'' + 9y = F(t)$$
$$y(0) = 0$$
$$y'(0) = 0$$

where F(t) is the 2π -periodic input function given by its Fourier series $F(t) = \sum_{n=1}^{\infty} \left[\frac{\cos nt}{n^2} + (-1)^n \frac{\sin nt}{n} \right].$

SOLUTION: Recall that since the differential equation is a linear equation with constant coefficients, then the general solution to the nonhomogeneous equation is given by

$$y(t) = y_h(t) + y_p(t)$$

where $y_h(t)$ is the general solution to the corresponding homogeneous equation and $y_p(t)$ is any particular solution to the nonhomogeneous equation.

In order to solve the homogeneous equation

$$y'' + 9y = 0,$$

we try a solution of the form $y_h(t) = e^{\lambda t}$, substituting this into the equation, we obtain

$$e^{\lambda t}(\lambda^2 + 9) = 0,$$

and since $e^{\lambda t} \neq 0$, then the auxiliary equation is $\lambda^2 + 9 = 0$, which has roots $\lambda_1 = 3i$ and $\lambda_2 = -3i$. The general solution to the homogeneous equation is therefore

$$y_h(t) = c_1 \cos 3t + c_2 \sin 3t$$

where c_1 and c_2 are arbitrary constants.

In order to find a particular solution to the nonhomogeneous equation, we use the method of Fourier series and solve the equation

$$y''(t) + 9y(t) = a_n \cos nt + b_n \sin nt$$

for $n \ge 0$, where a_n and b_n are the Fourier coefficients of the driving force F(t).

Note that for $n \neq 3$, from the method of undetermined coefficients, the n^{th} normal mode of vibration is

$$y_n(t) = \alpha_n \cos nt + \beta_n \sin nt$$

where the constants α_n and β_n are determined from the Fourier coefficients of F(t) to be

$$\alpha_0 = 0, \quad \alpha_n = \frac{1}{n^2(9-n^2)}, \quad \beta_n = \frac{(-1)^n}{n(9-n^2)}$$

for $n \ge 1$, $n \ne 3$.

While for n = 3, the term in the driving force has the same frequency as the natural frequency of the system, and we have to solve the nonhomogeneous equation

$$y_3''(t) + 9y_3(t) = a_3 \cos 3t + b_3 \sin 3t.$$

In this case the method of undetermined coefficients suggests a solution of the form

$$y_3(t) = t(\alpha_3 \cos 3t + \beta_3 \sin 3t).$$

In order to determine the constants α_3 and β_3 , we substitute this expression into the differential equation

$$y_3'' + 9y_3 = a_3 \cos 3t + b_3 \sin 3t$$

to obtain

$$\alpha_3 = -\frac{b_3}{6}$$
 and $\beta_3 = \frac{a_3}{6}$.

The particular solution to the nonhomogeneous equation can then be written as

$$y_p(t) = \sum_{\substack{n=1\\n\neq 3}}^{\infty} \left(\frac{1}{n^2(9-n^2)} \cos nt + \frac{(-1)^n}{n(9-n^2)} \sin nt \right) + \frac{t}{6} \left(-\frac{1}{3} \cos 3t + \frac{1}{3^2} \sin 3t \right),$$

and the general solution to the nonhomogeneous equation is

$$y(t) = c_1 \cos 3t + c_2 \sin 3t + \sum_{\substack{n=1\\n \neq 3}}^{\infty} \left(\frac{1}{n^2(9-n^2)} \cos nt + \frac{(-1)^n}{n(9-n^2)} \sin nt \right) + \frac{t}{6} \left(-\frac{1}{3} \cos 3t + \frac{1}{3^2} \sin 3t \right)$$

and the constants c_1 and c_2 can now be evaluated using the initial conditions y(0) = y'(0) = 0. Applying the initial conditions, we find

$$c_1 = -\sum_{\substack{n=1\\n\neq 3}}^{\infty} \frac{1}{n^2(9-n^2)}$$
 and $c_2 = \frac{1}{3^2 \cdot 6} - \frac{1}{3} \sum_{\substack{n=1\\n\neq 3}}^{\infty} \frac{(-1)^n}{9-n^2}$.

Note: The solution with driving force

$$F(t) = \sum_{n=1}^{\infty} \frac{\sin nt}{n^2}$$

is also acceptable.

Question 2. [p 107, #8] Verify that the function

$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

is a solution to the three dimensional Laplace equation $u_{xx} + u_{yy} + u_{zz} = 0.$

SOLUTION: By symmetry, we need only calculate the derivatives with respect to one of the variables, say x, and obtain the other derivatives by permuting the variables. For example,

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}} \right) = \frac{-x}{\left(x^2 + y^2 + z^2\right)^{3/2}},$$

so that

$$\frac{\partial u}{\partial y} = \frac{-y}{(x^2 + y^2 + z^2)^{3/2}}$$
 and $\frac{\partial u}{\partial z} = \frac{-z}{(x^2 + y^2 + z^2)^{3/2}}$.

Similarly,

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{-x}{\left(x^2 + y^2 + z^2\right)^{3/2}} \right) = \frac{2x^2 - y^2 - z^2}{\left(x^2 + y^2 + z^2\right)^{5/2}},$$

so that

$$\frac{\partial^2 u}{\partial y^2} = \frac{2y^2 - x^2 - z^2}{\left(x^2 + y^2 + z^2\right)^{5/2}} \quad \text{and} \quad \frac{\partial^2 u}{\partial z^2} = \frac{2z^2 - x^2 - y^2}{\left(x^2 + y^2 + z^2\right)^{5/2}}.$$

Therefore,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{(2x^2 - y^2 - z^2) + (2y^2 - x^2 - z^2) + (2z^2 - x^2 - y^2)}{(x^2 + y^2 + z^2)^{5/2}} = 0,$$

that is, u satisfies Laplace's equation $\nabla^2 u = 0$.

Question 3. [p 123, #2]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= \sin \pi x \cos \pi x, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= 0, \quad 0 < x < 1, \end{aligned}$$

using the Method of Separation of Variables.

SOLUTION: As in class, we assume a solution of the form u(x,t) = X(x)T(t) and plug this expression in the differential equation to get

$$X \cdot T'' = \frac{1}{\pi^2} X'' \cdot T,$$

and now separate the variables by dividing by $X \cdot T$ to get

$$\frac{T''}{T} = \frac{X''}{\pi^2 X} = -\lambda.$$

Since x and t are independent variables, then λ is a constant, and we have two ordinary differential equations to solve:

$$X'' + \lambda \pi^2 X = 0$$
 and $T'' + \lambda T = 0.$

We can satisfy the two boundary conditions by requiring that X(0) = 0 and X(1) = 0, and X must satisfy the ordinary boundary value problem:

$$X'' + \lambda \pi^2 X = 0, \quad 0 < x < 1$$

 $X(0) = 0$
 $X(1) = 0.$

The cases $\lambda = 0$ and $\lambda < 0$ both result in a solution X(x) = 0 for all $x \in [0, 1]$, and the only nontrivial solution arises when $\lambda > 0$, say $\lambda = \mu^2$, where $\mu \neq 0$. In this case we have to solve the boundary value problem

$$X'' + \mu^2 \pi^2 X = 0, \quad 0 < x < 1$$

 $X(0) = 0$
 $X(1) = 0.$

The general solution to this differential equation is

$$X(x) = A\cos\mu\pi x + B\sin\mu\pi x,$$

and applying the first boundary condition, we see that X(0) = A = 0, and the solution is

$$X(x) = B\sin\mu\pi x.$$

Applying the second boundary condition, we see that $X(1) = B \sin \mu \pi = 0$, and in order to get a nontrivial solution we must have $\sin \mu \pi = 0$, but this can only happen if $\mu \pi = n\pi$, where n is an integer. For each $n \ge 1$ the solution is

$$X_n(x) = \sin n\pi x.$$

For each integer $n \geq 1$, we can solve the corresponding equation

$$T'' + n^2 T = 0$$

to get

$$T_n(t) = b_n \cos nt + b_n^* \sin nt$$

for $n \geq 1$.

Now, for each integer $n \ge 1$, the function

$$u_n(x,t) = X_n(x) \cdot T_n(t) = \sin n\pi x \left(b_n \cos nt + b_n^* \sin nt \right)$$

satisfies the wave equation and the two boundary conditions:

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0. \end{aligned}$$

Since the partial differential equation and the two boundary conditions are linear and homogeneous, by the superposition principle, any linear combination of these solutions

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} \sin n\pi x \left(b_n \cos nt + b_n^* \sin nt \right)$$

is also a solution to the partial differential equation and the boundary conditions.

In order to satisfy the initial conditions, we need

$$u(x,0) = \sum_{n=1}^{\infty} b_n \sin n\pi x,\tag{1}$$

and

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} n b_n^* \sin n\pi x,$$
(2)

and it is clear then that these are just the half-range expansions of the odd periodic extensions of u(x, 0)and $\frac{\partial u}{\partial t}(x, 0)$. Therefore, from (1) we have

$$b_n = 2 \int_0^1 u(x,0) \sin n\pi x \, dx$$

and

$$nb_n^* = 2 \int_0^1 \frac{\partial u}{\partial t}(x,0) \sin n\pi x \, dx$$

for $n \geq 1$.

Note that $b_n^* = 0$ for all $n \ge 1$, since $\frac{\partial u}{\partial t}(x,0) = 0$ for 0 < x < 1. Also, we have

$$u(x,0) = \sin \pi x \cos \pi x = \frac{1}{2} \sin 2\pi x,$$

so that u(x,0) is its own Fourier sine series, and

$$b_n = \begin{cases} \frac{1}{2} & \text{if } n = 2\\ 0 & \text{if } n \neq 2. \end{cases}$$

Therefore, the solution is

$$u(x,t) = \frac{1}{2}\sin 2\pi x \cos 2t$$

for $0 \le x \le 1, t \ge 0$.

Question 4. [p 123, #4]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= \sin \pi x + \frac{1}{2} \sin 3\pi x + 3 \sin 7\pi x, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= \sin 2\pi x, \quad 0 < x < 1, \end{aligned}$$

using the Method of Separation of Variables.

SOLUTION: As in the previous problem, the solution is

$$u(x,t) = \sum_{n=1}^{\infty} \sin n\pi x \left(b_n \cos n\pi t + b_n^* \sin n\pi t \right),$$

where the coefficients are to be determined using the initial conditions. Differentiating, we have

$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} \sin n\pi x \left(-n\pi b_n \sin n\pi t + n\pi b_n^* \cos n\pi t\right),$$

and setting t = 0, we get

$$u(x,0) = \sum_{n=1}^{\infty} b_n \sin n\pi x$$
 and $\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} n\pi b_n^* \sin n\pi x$,

and again these are just the Fourier sine series of f(x) and g(x), the initial displacement and initial velocity.

From the first initial condition

$$u(x,0) = \sin \pi x + \frac{1}{2}\sin 3\pi x + 3\sin 7\pi x,$$

we see that

$$b_1 = 1, \quad b_3 = \frac{1}{2}, \quad b_7 = 3,$$

and $b_n = 0$ for all other values of n.

From the second initial condition

$$\frac{\partial u}{\partial t}(x,0) = \sin 2\pi x,$$

so that

$$b_n^* = \begin{cases} \frac{1}{2\pi} & \text{if } n = 2, \\ 0 & \text{if } n \neq 2. \end{cases}$$

Therefore, the solution is

$$u(x,t) = \sin \pi x \cos \pi t + \frac{1}{2\pi} \sin 2\pi x \sin 2\pi t + \frac{1}{2} \sin 3\pi x \cos 3\pi t + 3 \sin 7\pi x \cos 7\pi t$$

for 0 < x < 1, t > 0.

Question 5. [p 124, #12]

Damped vibrations of a string. In the presence of resistance proportional to velocity, the one dimensional wave equation becomes

$$\frac{\partial^2 u}{\partial t^2} + 2k \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \quad 0 < x < L, \ t > 0.$$

Solve this equation subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0 for all t > 0,

and the initial conditions

$$u(x,0) = f(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = g(x)$ for $0 < x < L$.

SOLUTION:

(a) Assume a product solution of the form u(x,t) = X(x)T(t), and plug it into the equation to get

$$XT'' + 2kXT' = c^2 X''T,$$

and now separate the variables by dividing by $c^2 XT$ to get

$$\frac{T''}{c^2T} + \frac{2kT'}{c^2T} = \frac{X''}{X}.$$

Since x and t are independent variables and the left hand side depends only on t, while the right hand side depends only on x, then both sides must be constant, so that

$$\frac{T''}{c^2T} + \frac{2kT'}{c^2T} = \lambda$$
 and $\frac{X''}{X} = \lambda$,

so that x and T must satisfy the following ordinary differential equations

$$X'' - \lambda X = 0$$
$$T'' + 2kT' - \lambda c^2 T = 0.$$

Now, we can satisfy the boundary conditions by requiring that X(0) = X(L) = 0, so that X must satisfy the boundary value problem

$$X'' - \lambda X = 0$$
$$X(0) = 0$$
$$X(L) = 0$$

As in the previous problems, we only get a nontrivial solution if the separation constant λ is negative, say $\lambda = -\mu^2$ where $\mu \neq 0$, and in this case, the equations for X and T become

$$X'' + \mu^2 X = 0, \quad X(0) = 0, \quad X(L) = 0,$$

$$T'' + 2kT' + (\mu c)^2 T = 0,$$

where $\mu \neq 0$ is the separation constant.

(b) The general solution to the equation

$$X'' + \mu^2 X = 0$$

is given by

$$X(x) = A\cos\mu x + B\sin\mu x$$

where the constants are determined from the boundary conditions. Since X(0) = 0, then we must have A = 0; and since X(L) = 0, the only nontrivial solutions arise when $\sin \mu L = 0$, and this happens if and only if $\mu L = n\pi$, where n is an integer.

Therefore, the only nontrivial solutions to the boundary value problem for X occur for

$$\mu = \mu_n = \frac{n\pi}{L}$$

and the solutions are

$$X = X_n = \sin\left(n\pi x/L\right)$$

for n = 1, 2, ...

(c) For each integer $n \ge 1$, the corresponding equation for T is

$$T'' + 2kT' + (n\pi c/L)^2 T = 0,$$

a second order, linear, homogeneous, constant coefficient equation which we know how to solve. Assuming a solution of the form $T(t) = e^{\lambda t}$, and plugging this into the differential equation we get the characteristic equation

$$\lambda^2 + 2k\lambda + \frac{n^2\pi^2c^2}{L^2} = 0,$$

and the roots of this quadratic equation are

$$\lambda_{n,1} = -k + \sqrt{k^2 - \frac{n^2 \pi^2 c^2}{L^2}}$$
 and $\lambda_{n,2} = -k - \sqrt{k^2 - \frac{n^2 \pi^2 c^2}{L^2}}.$

In order to find the corresponding solutions $T_n(t)$, we need to consider three cases, according to whether $\sqrt{k^2 - \frac{n^2 \pi^2 c^2}{L^2}}$ is zero, positive or negative.

Case 1: $k^2 - \frac{n^2 \pi^2 c^2}{L^2} = 0$. In this case, we have equal real roots, and the solution is

$$T_n(t) = e^{-kt} \left(a_n + b_n t \right)$$

where $k = \frac{n\pi c}{L} > 0$.

Case 2: $k^2 - \frac{n^2 \pi^2 c^2}{L^2} > 0$. In this case, we have two distinct real roots, and the solution is

$$T_n(t) = e^{-\kappa t} \left(a_n \cosh \lambda_n t + b_n \sinh \lambda_n t \right)$$

where $\lambda_n = \sqrt{k^2 - \frac{n^2 \pi^2 c^2}{L^2}}$.

Case 3: $k^2 - \frac{n^2 \pi^2 c^2}{L^2} < 0$. In this case, we have two distinct imaginary roots, and the solution is

$$T_n(t) = e^{-kt} \left(a_n \cos \lambda_n t + b_n \sin \lambda_n t \right)$$

where $\lambda_n = \sqrt{\frac{n^2 \pi^2 c^2 - k^2}{L^2}}.$

(d) Since the partial differential equation and the boundary conditions are linear and homogeneous, then we can use the superposition principle to write the solution u(x,t) as a linear combination of the solutions $u_n(x,t) = X_n(x) \cdot T_n(t)$ that we found in part (c).

If $\frac{kL}{\pi c}$ is not a positive integer, then

$$k^2 - \frac{n^2 \pi^2 c^2}{L^2} \neq 0,$$

and either $1 \le n < \frac{kL}{\pi c}$, or $n > \frac{kL}{\pi c}$, so we are in Case 2 or Case 3, and the solution is

$$u(x,t) = e^{-kt} \sum_{1 \le n < kL/\pi c} \sin(n\pi x/L) \left(a_n \cosh \lambda_n t + b_n \sinh \lambda_n t\right) \\ + e^{-kt} \sum_{kL/\pi c < n < \infty} \sin(n\pi x/L) \left(a_n \cos \lambda_n t + b_n \sin \lambda_n t\right)$$

where these sums run over integers only, and $\lambda_n = \sqrt{\left|k^2 - (n\pi c/L)^2\right|}$.

Also, to satisfy the initial conditions, the a_n are the Fourier sine coefficients for the odd periodic extension of f(x), that is,

$$a_n = \frac{2}{L} \int_0^L f(x) \sin\left(n\pi x/L\right) \, dx$$

for n = 1, 2, ...

If we differentiate this expression for u(x,t) with respect to t, and set t = 0, then we see that $-ka_n + \lambda_n b_n$ are just the Fourier sine coefficients of the odd periodic extension of g(x), that is,

$$-ka_n + \lambda_n b_n = \frac{2}{L} \int_0^L g(x) \sin\left(n\pi x/L\right) \, dx$$

for n = 1, 2, ...

(e) In $\frac{kL}{\pi c}$ is a positive integer, then we have to add the corresponding term in the sum when the index n is equal to $\frac{kL}{\pi c}$. In this case, if $n_0 = \frac{kL}{\pi c}$, the solution is as in (d) with the one additional term

$$\sin\left(kx/c\right)\left(a_{kL/\pi c}e^{-kt} + b_{kL/\pi c}te^{-kt}\right)$$

with a_n and b_n as in (d), except that $b_{kL/\pi c}$ is determined from the equation

$$-ka_{kL/\pi c} + b_{kL/\pi c} = \frac{2}{L} \int_0^L g(x) \sin(kx/c) dx$$

Question 6. [p 133, #4]

Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(1,t) &= 0, \quad t > 0 \\ u(x,0) &= 0, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= 1, \quad 0 < x < 1. \end{split}$$

SOLUTION: D'Alembert's solution to the wave equation is

$$u(x,t) = \frac{1}{2} \left[f^*(x-ct) + f^*(x+ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} g^*(s) \, ds$$

where f^* and g^* are the the odd 2-periodic extensions of f and g. For this problem, we have c = 1, and f(x) = 0 for 0 < x < 1, so that $f^*(x) = 0$ for all $x \in \mathbb{R}$. Also, we have g(x) = 1 for 0 < x < 1, so that

$$g^*(x) = \begin{cases} 1 & \text{for} & 0 < x < 1\\ -1 & \text{for} & -1 < x < 0, \end{cases}$$

and $g^*(x+2) = g^*(x)$ otherwise.

An antiderivative of $g^*(x)$ on the interval [-1, 1] is given by

$$G(x) = \begin{cases} x & \text{for} & 0 < x < 1 \\ -x & \text{for} & -1 < x < 0, \end{cases}$$

and G(x+2) = G(x) otherwise.

Therefore, the solution is

$$u(x,t) = \frac{1}{2} \left[G(x+t) - G(x-t) \right]$$

where G is as above.

Question 7. [p 133, #8]

Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= 0, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= \sin \pi x, \quad 0 < x < 1. \end{aligned}$$

SOLUTION: As in the previous problem d'Alembert's solution to the wave equation is

$$u(x,t) = \frac{1}{2} \left[f^*(x-ct) + f^*(x+ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} g^*(s) \, ds$$

where f^* and g^* are the the odd 2-periodic extensions of f and g.

Again, for this problem, we have c = 1, and f(x) = 0 for 0 < x < 1, so that $f^*(x) = 0$ for all $x \in \mathbb{R}$. Also, we have $g(x) = \sin \pi x$ for 0 < x < 1, so that

$$g^*(x) = \sin \pi x$$

for $x \in \mathbb{R}$.

An antiderivative of $g^*(x)$ is given by

$$G(x) = -\frac{1}{\pi}\cos\pi x$$

for $x \in \mathbb{R}$.

$$u(x,t) = \frac{1}{2\pi} \left[\sin \pi (x-t) - \sin \pi (x+t) \right] = -\frac{1}{\pi} \cos \pi x \sin \pi t.$$

Question 8. [p 134, #16]

D'Alembert's solution for zero initial velocity. Show that the solution to the wave equation

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(L,t) &= 0, \quad t > 0 \\ u(x,0) &= f(x), \quad 0 < x < L, \\ \frac{\partial u}{\partial t}(x,0) &= 0, \quad 0 < x < L \end{split}$$

is given by

$$u(x,t) = \frac{1}{2} \sum_{n=1}^{\infty} b_n \left[\sin \left(n\pi (x - ct)/L \right) + \sin \left(n\pi (x + ct)/L \right) \right]$$
$$\int_{-L}^{L} f(x) \sin \left(n\pi x/L \right) \, dx, \quad n = 1, 2$$

where $b_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) \, dx, \ n = 1, 2, \dots$

SOLUTION: We showed in class that the solution to this problem is given by

$$u(x,t) = \sum_{n=1}^{\infty} \sin\left(n\pi x/L\right) \left(b_n \cos\left(n\pi ct/L\right) + b_n^* \sin\left(n\pi ct/L\right)\right)$$

where

$$b_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) \, dx$$
 and $b_n^* = \frac{2}{n\pi c} \int_0^L g(x) \sin(n\pi x/L) \, dx$

for $n \geq 1$.

Since g(x) = 0 for 0 < x < L, then $b_n^* = 0$ for all $n \ge 1$, and the solution is given by

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/L) \cos(n\pi ct/L),$$

and since

$$\sin A \cos B = \frac{1}{2} \left[\sin(A - B) + \sin(A + B) \right],$$

then

$$u(x,t) = \frac{1}{2} \sum_{n=1}^{\infty} b_n \left[\sin(n\pi(x-ct)/L) + \sin(n\pi(x+ct)/L) \right]$$
(*)

where $b_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) dx$.

Now, if f^* is the odd 2L-periodic extension of f, then the Fourier series for f converges to f^* at all points of continuity of f^* , so that

$$f^*(x) = \sum_{n=1}^{\infty} b_n \sin\left(n\pi x/L\right),$$

and therefore, from (*) we have

$$u(x,t) = \frac{1}{2} \left[f^*(x - ct) + f^*(x + ct) \right].$$

Question 9. [p 144, #2]

Solve the boundary value problem for the one dimensional heat equation

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(\pi,t) &= 0, \quad t > 0\\ u(x,0) &= 30 \sin x, \quad 0 < x < \pi, \end{aligned}$$

and give a brief physical explanation of the problem.

SOLUTION: Using separation of variables as in class, we obtain the solution (c = 1 here)

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 t} \sin nx,$$

where $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$ for $n \ge 1$.

Now,

$$u(x,0) = f(x) = 30\sin x$$

for $0 < x < \pi$, that is, f(x) is its own Fourier sine series, so that $b_1 = 30$, and $b_n = 0$ for all $n \ge 2$. The solution is

$$u(x,t) = 30e^{-t}\sin x,$$

and this gives the temperature in a bar whose sides are insulated and whose ends x = 0 and $x = \pi$ are kept at 0 temperature, with an initial temperature distribution given by $u(x, 0) = 30 \sin x$, $0 < x < \pi$.

Question 10. [p 144, #6]

Solve the boundary value problem for the one dimensional heat equation

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(1,t) &= 0, \quad t > 0 \\ u(x,0) &= e^{-x}, \quad 0 < x < 1, \end{split}$$

and give a brief physical explanation of the problem.

SOLUTION: After separating variables, applying the initial conditions, and using the superposition principle, we obtain the solution

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t} \sin n\pi x,$$

where

$$b_n = 2 \int_0^1 e^{-x} \sin n\pi x \, dx$$

for $n \geq 1$.

Integrating by parts, we get

$$\int_0^1 e^{-x} \sin n\pi x \, dx = -\frac{e^{-x}}{1+n^2\pi^2} \left(\sin n\pi x + n\pi \cos n\pi x\right) \Big|_0^1$$
$$= \frac{n\pi}{1+n^2\pi^2} \left[1+(-1)^{n+1}e^{-1}\right],$$

so that

$$u(x,t) = 2\pi \sum_{n=1}^{\infty} \frac{n}{1+n^2\pi^2} \left[1 + (-1)^{n+1} e^{-1} \right] e^{-n^2\pi^2 t} \sin n\pi x,$$

and this gives the temperature in a bar whose sides are insulated and whose ends x = 0 and x = 1 are kept at 0 temperature, with an initial temperature distribution given by $u(x, 0) = e^{-x}$, 0 < x < 1.