MATH 300 Fall 2004

Advanced Boundary Value Problems I
Solutions to Assignment 1
Due: Friday September 24, 2004

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 5, \#8]
Derive the general solution of the equation

$$
a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=u, \quad a, b \neq 0
$$

by using an appropriate change of variables.
Solution: Let

$$
\alpha=A x+B t \quad \text { and } \quad \beta=C x+D t
$$

where A, B, C, and D are to be determined so as to reduce the partial differential equation to and ordinary differential equation, which we can then solve.
From the chain rule, we have

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=A \frac{\partial u}{\partial \alpha}+C \frac{\partial u}{\partial \beta} \\
& \frac{\partial u}{\partial t}=B \frac{\partial u}{\partial \alpha}+D \frac{\partial u}{\partial \beta}
\end{aligned}
$$

and the original partial differential equation becomes

$$
(a B+b A) \frac{\partial u}{\partial \alpha}+(a D+b C) \frac{\partial u}{\partial \beta}=u
$$

Now let $B=-b, A=a, C=0$, and $D=1 / a$, then the equation becomes

$$
\frac{\partial u}{\partial \beta}-u=0
$$

and multiplying this equation by $e^{-\beta}$, we have

$$
e^{-\beta} \frac{\partial u}{\partial \beta}-e^{-\beta} u=0
$$

that is,

$$
\frac{\partial}{\partial \beta}\left(e^{-\beta} u\right)=0
$$

and the quantity $e^{-\beta} u$ is independent of α. Therefore, the solution is

$$
u=f(\alpha) e^{\beta},
$$

where f is an arbitrary function of α. In terms of the original variables, the solution is

$$
u(x, t)=f(a x-b t) e^{t / a}
$$

Question 2. [p 14, \#10]

Use d'Alembert's method and the superposition principle to solve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

with initial data

$$
u(x, 0)=e^{-x^{2}}, \quad \frac{\partial u}{\partial t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}}, \quad-\infty<x<\infty .
$$

Solution: Using the change of variables

$$
\alpha=x+c t \quad \text { and } \quad \beta=x-c t,
$$

then from the chain rule we have

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta},
$$

and replacing u by $\frac{\partial u}{\partial x}$, we get

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right)=\frac{\partial}{\partial \alpha}\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right)+\frac{\partial}{\partial \beta}\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right),
$$

that is,

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial \alpha^{2}}+2 \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}
$$

Again, from the chain rule, we have

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta},
$$

and replacing u by $\frac{\partial u}{\partial t}$, we get

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial t}\left(c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta}\right)=c \frac{\partial}{\partial \alpha}\left(c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta}\right)-c \frac{\partial}{\partial \beta}\left(c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta}\right),
$$

that is,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial \alpha^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \alpha \partial \beta}+c^{2} \frac{\partial^{2} u}{\partial \beta^{2}},
$$

and substituting these expressions into the wave equation, we obtain

$$
\frac{\partial^{2} u}{\partial \alpha \partial \beta}=0
$$

This equation says that $\frac{\partial u}{\partial \beta}$ doesn't depend on α, and therefore

$$
\frac{\partial u}{\partial \beta}=g(\beta),
$$

where g is an arbitrary differentiable function.

Now, integrating this equation with respect to β, holding α fixed, we get

$$
u=\int \frac{\partial u}{\partial \beta} d \beta+F(\alpha)=\int g(\beta) d \beta+F(\alpha)=F(\alpha)+G(\beta)
$$

where F is an arbitrary differentiable function and G is an antiderivative of g.
Finally, using the fact that $\alpha=x+c t$ and $\beta=x-c t$, we get d'Alembert's solution to the one-dimensional wave equation:

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

where F and G are arbitrary differentiable functions.
Now, in order to solve the original question, we solve the following initial-boundary-value problems, and use the superposition principle to combine them to get a solution to the original problem:

$$
\begin{gather*}
\frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t \geq 0 \\
v(x, 0)=e^{-x^{2}}, \quad-\infty<x<\infty \tag{1}\\
\frac{\partial v}{\partial t}(x, 0)=0 \quad-\infty<x<\infty
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t \geq 0 \\
w(x, 0)=0, \quad-\infty<x<\infty \tag{2}\\
\frac{\partial w}{\partial t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}} \quad-\infty<x<\infty
\end{gather*}
$$

the solution to the original problem is then $u=v+w$. (Check this!!!)
For problem (1), we use the initial conditions to write

$$
v(x, 0)=e^{-x^{2}}=F(x)+G(x)
$$

so that $F(x)+G(x)=e^{-x^{2}}$, and

$$
\frac{\partial v}{\partial t}=0=c F^{\prime}(x)-c G^{\prime}(x)
$$

so that

$$
F(x)-G(x)=C
$$

where C is an arbitrary constant. Therefore,

$$
2 F(x)=e^{-x^{2}}+C \quad \text { and } \quad 2 G(x)=e^{-x^{2}}-C
$$

and the solution to the first problem is

$$
v(x, t)=F(x+c t)+G(x-c t)=\frac{1}{2}\left[e^{-(x+c t)^{2}}+e^{-(x-c t)^{2}}\right]
$$

For problem (2), we use the initial conditions to write

$$
w(x, 0)=0=F(x)+G(x)
$$

so that $G(x)=-F(x)$, and

$$
\frac{\partial w}{\partial t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}}=c F^{\prime}(x)-c G^{\prime}(x)
$$

so that $c F^{\prime}(x)-c G^{\prime}(x)=2 c F^{\prime}(x)=\frac{x}{\left(1+x^{2}\right)^{2}}$, and integrating we have

$$
2 c F(x)=\frac{1}{2} \cdot \frac{-1}{1+x^{2}}+2 c C
$$

where C is an arbitrary constant. Therefore,

$$
F(x)=\frac{-1}{4 c\left(1+x^{2}\right)}+C \quad \text { and } \quad G(x)=\frac{1}{4 c\left(1+x^{2}\right)}-C
$$

and the solution to the second problem is

$$
w(x, t)=\frac{1}{4 c}\left[\frac{-1}{1+(x+c t)^{2}}+\frac{1}{1+(x-c t)^{2}}\right] .
$$

The solution to the original initial value boundary value problem is then

$$
u(x, t)=v(x, t)+w(x, t)=\frac{1}{2}\left[e^{-(x+c t)^{2}}+e^{-(x-c t)^{2}}\right]+\frac{1}{4 c}\left[\frac{-1}{1+(x+c t)^{2}}+\frac{1}{1+(x-c t)^{2}}\right]
$$

Question 3. [p 24, \#16]
Suppose that f is T-periodic and let F be an antiderivative of f, that is,

$$
F(x)=\int_{a}^{x} f(t) d t, \quad-\infty<x<\infty
$$

Show that F is T-periodic if and only if the integral of f over an interval of length T is 0 .
Solution: Note that

$$
F(x+T)=\int_{a}^{x+T} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{x+T} f(t) d t=F(x)+\int_{x}^{x+T} f(t) d t
$$

for all $x \in \mathbb{R}$, and therefore $F(x+T)=F(x)$ for all $x \in \mathbb{R}$ if and only if

$$
\int_{x}^{x+T} f(t) d t=0
$$

for all $x \in \mathbb{R}$, that is, if and only if the integral of f over any interval of length T is 0 . Since f is T-periodic, then F is T-periodic if and only if

$$
\int_{0}^{T} f(t) d t=0
$$

Question 4. [p 25, \#22]
Triangular Wave. Let $f(x)=x-2\left[\frac{x+1}{2}\right]$, and consider the function

$$
h(x)=|f(x)|=\left|x-2\left[\frac{x+1}{2}\right]\right| .
$$

(a) Show that h is 2-periodic.
(b) Plot the graph of h.
(c) Generalize (a) by finding a closed formula that describes the $2 p$-periodic triangular wave

$$
g(x)=|x| \quad \text { if } \quad-p<x<p,
$$

and

$$
g(x+2 p)=g(x) \quad \text { otherwise } .
$$

Solution: Note that if we can show that

$$
f(x)=x-2\left[\frac{x+1}{2}\right]
$$

is 2-periodic, then for any $x \in \mathbb{R}$, we have

$$
h(x+2)=|f(x+2)|=|f(x)|=h(x)
$$

for all $x \in \mathbb{R}$, so that h is also 2-periodic.
(a) Now,

$$
\begin{aligned}
f(x+2) & =x+2-2\left[\frac{(x+2)+1}{2}\right] \\
& =x+2-2\left[\frac{x+1}{2}+1\right] \\
& =x+2-2\left(\left[\frac{x+1}{2}\right]+1\right) \\
& =x-2\left[\frac{x+1}{2}\right] \\
& =f(x)
\end{aligned}
$$

and f is 2-periodic, and from the remark above $h=|f|$ is also 2-periodic.
(b) Since $f(x)=x$ for $-1<x<1$, then $h(x)=|x|$ for $-1<x<1$, and the graph of h is shown below.

(c) In order to find a $2 p$-periodic triangular wave, we use the $2 p$-periodic function

$$
f(x)=x-2 p\left[\frac{x+p}{2 p}\right]
$$

and note that $f(x)=x$ on the interval $-p<x<p$. We leave it to you to check, exactly as in part (a), that this is $2 p$-periodic and that $f(x)=x$ for $-p<x<p$. Therefore,

$$
g(x)=\left|x-2 p\left[\frac{x+p}{2 p}\right]\right|
$$

is a $2 p$-periodic triangular wave which is equal to $|x|$ on the interval $-p<x<p$.
Question 5. [p 35, \#6]
The function f is a 2π-periodic function and on the interval $-\pi \leq x \leq \pi$, we have

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } \quad 0<x<\pi / 2 \\
0 & \text { if } \quad \pi / 2<|x|<\pi \\
-1 & \text { if } \quad-\pi / 2<x<0
\end{aligned}\right.
$$

(a) Show that the Fourier series for f is given by $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(1-\cos \frac{n \pi}{2}\right) \sin n x$.
(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.

Solution:
(a) Note that f is an odd function on the interval $-\pi<x<\pi$, so that

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=0
$$

and

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=0
$$

for $n=1,2, \ldots$.
We use Euler's formula to calculate the b_{n},

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{0}(-1) \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi / 2} \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \sin n x d x \\
& =\left.\frac{2}{\pi}\left[-\frac{1}{n} \cos n x\right]\right|_{0} ^{\pi / 2} \\
& =\frac{2}{n \pi}\left[1-\cos \frac{n \pi}{2}\right]
\end{aligned}
$$

and the Fourier series is

$$
\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-\cos \frac{n \pi}{2}}{n} \sin n x
$$

(b) The Fourier series of the graph of f on the interval $-\pi<x<\pi$ is shown below.

Note that the original function f is piecewise smooth and has only a finite jump discontinuity at $x=0$ and $x= \pm \pi / 2$, thus, from the Fourier Series Representation Theorem, the Fourier series of f will converge to 0 at all points $x=2 n \pi, n=0, \pm 1, \pm 2, \pm 3, \ldots$, and for all points $(2 n+1) \pi / 2$, the Fourier series of f will converge to $(-1)^{n} \pi / 2, n=0, \pm 1, \pm 2, \pm 3, \ldots$. The rest of the graph of the Fourier series can be obtained by translating this graph by an integer multiple of 2π in the x-direction.

Question 6. [p 35, \#8]
The function f is 2π-periodic and on the interval $-\pi \leq x \leq \pi$, we have $f(x)=|\cos x|$.
(a) Show that the Fourier series for f is given by $\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1} \cos 2 n x$.
(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.

Solution:
(a) Note that f an even function since

$$
f(-x)=|\cos (-x)|=|\cos x|=f(x)
$$

for all $x \in \mathbb{R}$, therefore $b_{n}=0$ for all $n \geq 1$, and we only need to compute a_{n} for $n \geq 0$.
Now,

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\cos x| d x=\frac{1}{\pi} \int_{0}^{\pi}|\cos x| d x=\frac{1}{\pi} \int_{0}^{\pi / 2} \cos x d x-\int_{\pi / 2}^{\pi} \cos x d x \\
& =\left.\frac{1}{\pi} \sin x\right|_{0} ^{\pi / 2}-\left.\frac{1}{\pi} \sin x\right|_{\pi / 2} ^{\pi}=\frac{1}{\pi}-(-1) \frac{1}{\pi}=\frac{2}{\pi}
\end{aligned}
$$

and for $n \geq 1$, since $\cos n x$ is also an even function, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|\cos x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}|\cos x| \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \cos x \cos n x d x-\frac{2}{\pi} \int_{\pi / 2}^{\pi} \cos x \cos n x d x
\end{aligned}
$$

If $n=1$, then

$$
\begin{aligned}
a_{1} & =\frac{2}{\pi} \int_{0}^{\pi / 2} \cos ^{2} x d x-\frac{2}{\pi} \int_{\pi / 2}^{\pi} \cos ^{2} x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) d x-\frac{2}{\pi} \int_{\pi / 2}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) d x \\
& =\frac{2}{\pi}\left[\frac{\pi}{2}-\left(\pi-\frac{\pi}{2}\right)\right]=\frac{2}{\pi}\left[\frac{\pi}{2}-\frac{\pi}{2}\right]=0
\end{aligned}
$$

Now,

$$
2 \cos x \cos n x=\cos (n+1) x+\cos (n-1) x
$$

so that for $n \neq 1$, we have

$$
\frac{2}{\pi} \int_{0}^{\pi / 2} \cos x \cos n x d x=\frac{1}{\pi} \int_{0}^{\pi / 2}(\cos (n+1) x+\cos (n-1) x) d x=\frac{1}{\pi}\left[\frac{\sin (n+1) \pi / 2}{n+1}+\frac{\sin (n-1) \pi / 2}{n-1}\right]
$$

and

$$
\frac{2}{\pi} \int_{\pi / 2}^{\pi} \cos x \cos n x d x=\frac{1}{\pi} \int_{\pi / 2}^{\pi}(\cos (n+1) x+\cos (n-1) x) d x=-\frac{1}{\pi}\left[\frac{\sin (n+1) \pi / 2}{n+1}+\frac{\sin (n-1) \pi / 2}{n-1}\right]
$$

For $n \neq 1$, we have

$$
a_{n}=\frac{2}{\pi}\left[\frac{\sin (n+1) \pi / 2}{n+1}+\frac{\sin (n-1) \pi / 2}{n-1}\right]
$$

and if n is odd, then $a_{n}=0$.
However, if n is even, say $n=2 k$, then

$$
\begin{aligned}
a_{2 k} & =\frac{2}{\pi}\left[\frac{\sin (2 k+1) \pi / 2}{2 k+1}+\frac{\sin (2 k-1) \pi / 2}{2 k-1}\right] \\
& =\frac{2}{\pi}\left[\frac{(-1)^{k}}{2 k+1}-\frac{(-1)^{k}}{2 k-1}\right] \\
& =\frac{4}{\pi} \frac{(-1)^{k}}{4 k^{2}-1} .
\end{aligned}
$$

and the Fourier series is

$$
a_{0}+\sum_{k=1}^{\infty} a_{2 k} \cos 2 k x=\frac{2}{\pi}+\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4 k^{2}-1} \cos 2 k x
$$

(b) Since $f(-\pi)=f(\pi)$, then the piecewise smooth 2π-periodic function with $f(x)=|\cos x|,-\pi \leq x \leq \pi$ is continuous at each $x \in \mathbb{R}$, and therefore the Fourier series converges to $f(x)$ for each $x \in \mathbb{R}$.

Question 7. [p 45, \#4]
The function f is $2 p$-periodic and is given on the interval $-p \leq x \leq p$ by $f(x)=x^{2}$. Show that the Fourier series of f is given by

$$
\frac{p^{2}}{3}-\frac{4 p^{2}}{\pi^{2}}\left[\cos (\pi x / p)-\frac{1}{2^{2}} \cos (2 \pi x / p)+\frac{1}{3^{2}} \cos (3 \pi x / p)-+\cdots\right]
$$

and find its values at the points of discontinuity of f.
Solution: Note that since $f(p)=p^{2}=(-p)^{2}=f(-p)$, then the piecewise smooth $2 p$-periodic function is continuous everywhere, and so has no points of discontinuity.
Also, since f is an even function, then $b_{n}=0$ for all $n \geq 1$, and the Fourier series for f has only cosine terms:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x / p)
$$

where $a_{0}=\frac{1}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos (n \pi x / p) d x$ for $n \geq 1$.

In order to calculate the coefficients a_{n}, we have

$$
a_{0}=\frac{1}{p} \int_{0}^{p} x^{2} d x=\left.\frac{1}{p} \frac{x^{3}}{3}\right|_{0} ^{p}=\frac{p^{2}}{3}
$$

For $n \geq 1$, we integrate by parts twice to get

$$
\begin{aligned}
a_{n} & =\frac{2}{p} \int_{0}^{p} x^{2} \cos (n \pi x / p) d x=\frac{2}{p}\left[\left.\frac{p}{n \pi} x^{2} \sin (n \pi x / p)\right|_{0} ^{p}-\frac{2 p}{n \pi} \int_{0}^{p} x \sin (n \pi x / p) d x\right] \\
& =\frac{4}{n \pi} \int_{0}^{p} x \sin (n \pi x / p) d x=\frac{4}{n \pi}\left[-\left.\frac{p}{n \pi} x \cos (n \pi x / p)\right|_{0} ^{p}+\frac{p}{n \pi} \int_{0}^{p} \cos (n \pi x / p) d x\right] \\
& =\frac{4 p^{2}}{n^{2} \pi^{2}}(-1)^{n}
\end{aligned}
$$

for $n=1,2,3, \ldots$ The Fourier series of f is

$$
\frac{p^{2}}{3}-\frac{4 p^{2}}{\pi^{2}}\left[\cos (\pi x / p)-\frac{1}{2^{2}} \cos (2 \pi x / p)+\frac{1}{3^{2}} \cos (3 \pi x / p)-+\cdots\right]
$$

and since f is piecewise smooth and continuous everywhere, the Fourier series given above converges to $f(x)$ for each $x \in \mathbb{R}$.

Question 8. [p 45, \#28]
The function f is $2 p$-periodic and is given on the interval $-p<x<p$ by $f(x)=x$. Show that the Fourier series of f is given by

$$
\frac{2 p}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n \pi x / p)
$$

by differentiating the Fourier series in the previous problem term by term. Justify your work.
Solution: Since the $2 p$-periodic fuction $F(x)$ in the previous section is piecewise smooth and continuous everywhere, the Fourier series converges to the function everywhere, and

$$
F(x)=\frac{p^{2}}{3}-\frac{4 p^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x / p)
$$

where $F(x)=x^{2}$ for $-p<x<p$. Since this function also has a piecewise smooth derivative, and

$$
F^{\prime}(x)=2 x=2 \cdot f(x)
$$

for $-p<x<p$, then the coefficients in the Fourier series of $F^{\prime}(x)$ can be obtained from Euler's formulas, or, they can be obtained by differentiating the above series term-by-term. Therefore, the Fourier series of $F^{\prime}(x)$ is given by

$$
\frac{4 p^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n \pi}{n^{2} p} \sin (n \pi x / p)=\frac{4 p}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n \pi x / p)
$$

and the Fourier series of $f(x)$ is

$$
\frac{2 p}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n \pi x / p)
$$

which converges to $f(x)$ for all $x \neq \pm n p$, and to 0 for $x= \pm n p$.

Question 9. [p 66, \#12]

Obtain the expansion

$$
e^{a x}=\frac{\sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \cos n x-n \sin n x)
$$

valid for all real numbers $a \neq 0$, and all $-\pi<x<\pi$.
Solution: If $f(x)$ is a 2π-periodic piecewise smooth function, the complex form of the Fourier series of $f(x)$ is

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where the Fourier coefficients are given by

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t
$$

Here the $N^{\text {th }}$ partial sum

$$
S_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

is the same as the usual partial sum (check this).
Now, if $f(x)=e^{a x}$ for $-\pi<x<\pi$, then

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{a x} e^{-i n x} d x=\left.\frac{1}{2 \pi} \frac{e^{(a-i n) x}}{a-i n}\right|_{-\pi} ^{\pi} \\
& =\frac{1}{2 \pi} \frac{e^{(a-i n) \pi}-e^{-(a-i n) \pi}}{a-i n}=\frac{1}{2 \pi} \frac{e^{a}(-1)^{n}-e^{-a}(-1)^{n}}{a-i n} \\
& =\frac{(-1)^{n} \sinh \pi a}{\pi(a-i n)}=\frac{(-1)^{n}(a+i n) \sinh \pi a}{\pi\left(a^{2}+n^{2}\right)},
\end{aligned}
$$

and the Fourier series of f is

$$
\frac{\sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}(a+i n)}{\left(a^{2}+n^{2}\right)} e^{i n x}=\frac{\sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \cos n x-n \sin n x)
$$

where we used the fact that

$$
(a+i n) e^{i n x}=(a+i n)(\cos n x+i \sin n x)=(a \cos n x-n \sin n x)+i(a \sin n x+n \cos n x)
$$

and the fact that the Fourier series of a real valued function is real valued, so that

$$
\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \sin n x+n \cos n x)=0
$$

Since the function f is piecewise smooth and is continuous for $-\pi<x<\pi$, then we have

$$
e^{a x}=\frac{\sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \cos n x-n \sin n x)
$$

for $-\pi<x<\pi$.

Question 10.

Establish the identity

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \quad(z \neq 1)
$$

and then use it to derive Lagrange's trigonometric identity:

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(2 n+1) \theta / 2]}{2 \sin (\theta / 2)} \quad(0<\theta<2 \pi)
$$

Solution: If $z \neq 1$, then

$$
\begin{aligned}
(1-z)\left(1+z+z^{2}+\cdots z^{n}\right) & =1+z+z^{2}+\cdots+z^{n}-\left(z+z^{2}+\cdots+z^{n+1}\right) \\
& =1-z^{n+1}
\end{aligned}
$$

so that

$$
1+z+z^{2}+\cdots z^{n}=\left\{\begin{array}{cl}
\frac{1-z^{n+1}}{1-z} & \text { if } z \neq 1 \\
n+1 & \text { if } z=1
\end{array}\right.
$$

Taking $z=e^{i \theta}$, where $0<\theta<2 \pi$, then $z \neq 1$, so that

$$
\begin{aligned}
1+e^{i \theta}+e^{2 i \theta}+\cdots+e^{n i \theta} & =\frac{1-e^{(n+1) i \theta}}{1-e^{i \theta}} \\
& =\frac{1-e^{(n+1) i \theta}}{-e^{i \theta / 2}\left(e^{i \theta / 2}-e^{-i \theta / 2}\right)} \\
& =\frac{-e^{-i \theta / 2}\left(1-e^{(n+1) i \theta}\right)}{2 i \sin (\theta / 2)} \\
& =\frac{i\left(e^{-i \theta / 2}-e^{\left(n+\frac{1}{2}\right) i \theta}\right)}{2 \sin (\theta / 2)} \\
& =\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin (\theta / 2)}+\frac{i}{2 \sin (\theta / 2)}\left(\cos (\theta / 2)-\cos \left(n+\frac{1}{2}\right) \theta\right)
\end{aligned}
$$

Equating real and imaginary parts, we have

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin (\theta / 2)}
$$

for $0<\theta<2 \pi$, and as an added bonus,

$$
\sin \theta+\sin 2 \theta+\cdot+\sin n \theta=\frac{1}{2} \cot (\theta / 2)-\frac{\cos \left(n+\frac{1}{2}\right) \theta}{2 \sin (\theta / 2)}
$$

for $0<\theta<2 \pi$.

