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Question 1. [p 5, #8]

Derive the general solution of the equation

by using an appropriate change of variables.

SOLUTION: Let
a = Az + Bt and B8 =Cx+ Dt,

where A, B, C, and D are to be determined so as to reduce the partial differential equation to and ordinary
differential equation, which we can then solve.

From the chain rule, we have
ou_ou ou
or  da op
@ ou ou
ot O op

and the original partial differential equation becomes

(aB + )2 & (aD+bC’)g—g =

D0 u.
Now let B=—b, A=a,C =0, and D = 1/a, then the equation becomes

ou
— _u=0
a3 T
and multiplying this equation by e~?, we have
efﬁg—g —e Py = 0,
that is,
0
(?_ﬁ (eiﬁu) =0,

and the quantity e “u is independent of . Therefore, the solution is
u= f(a)e’,
where f is an arbitrary function of «. In terms of the original variables, the solution is

u(z,t) = fax — bt)e'/?.



Question 2. [p 14, #10]

Use d’Alembert’s method and the superposition principle to solve the wave equation

Pu 0%

92~ 92
with initial data 5
2 (% o x
U(I,O):e y a(.f,o)—m, —o0 < T < 0o0.

SOLUTION: Using the change of variables
a=x+ct and 08 =x—ct,

then from the chain rule we have

ou_duda oudd _ou  ou
dr Odadxr 9B0r Ida 95’

0
and replacing u by 8—u, we get
x

Fu_ 0 (ou_ou\_ 0 (u _ou\_ 0 (ou ou
0z2 9z \da  0B) Oda \da 98 08 \da  0f

that is,
%u  0%u %u  0%u
— == +2—+ =
0x2 a2 0adB = 0?2
Again, from the chain rule, we have
ou  Ou 8_a Oudp  Ou ou

C7— — C=—,

o a0t oot ‘0a ‘8

0
and replacing u by 8_1;’ we get

Pu_ 9 (0w Ou\_ 0 (du Ou\_ 0
oz ot \“9a 98) " “9a \“9a  93) ‘95 \“0a

that is,
2 2 2 2
Ou _ 20U g2 0 | 200
ot? Oa? 0adf 032

and substituting these expressions into the wave equation, we obtain

9%u

—— =0.
dadf
. . ou
This equation says that % doesn’t depend on «, and therefore
ou

where g is an arbitrary differentiable function.
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Now, integrating this equation with respect to §, holding « fixed, we get

where F' is an arbitrary differentiable function and G is an antiderivative of g.

Finally, using the fact that o = x+ct and 8 = x — ct, we get d’Alembert’s solution to the one-dimensional
wave equation:
u(z,t) = Fx + ct) + G(z — ct),

where F' and G are arbitrary differentiable functions.

Now, in order to solve the original question, we solve the following initial-boundary-value problems, and use
the superposition principle to combine them to get a solution to the original problem:

0% 5 0%

w:CW, —o0 < x <00, tZO,
v(z,()):e*“””z, —00 < < 00 (1)
0
a—:(a:,()):() —00 << 00,

and

—co<x<oo, t>0,

ot? 0x2’

w(z,0) =0, —oco<zx< o0 (2)
ow T
E(I,O)—m —OO<.T<OO7

the solution to the original problem is then v = v + w. (Check this!!!)

For problem (1), we use the initial conditions to write

v(x,0) = e = F(z) + G(x),

2

so that F(z) + G(xz) = e *, and

0

(9_: =0=cF'(z) — G (2),
so that
where C is an arbitrary constant. Therefore,

2 2

2F () =e™" +C and 2G(x)=e"" = C,

and the solution to the first problem is

1
o(@,t) = Fla+ct) + Gla—ct) = 5 e=@Het)? 4 g=(m=ct)?|



For problem (2), we use the initial conditions to write
w(z,0) = 0 = F(z) + G(a),

so that G(z) = —F(z), and
ow x

E(x,()) = A7 = cF'(z) — G (),

so that c¢F'(z) — ¢G'(x) = 2¢F'(z) = ﬁ, and integrating we have
1 -1
2CF($) = 5 . 1—|-—.T2 +2CC7

where C' is an arbitrary constant. Therefore,

F(x):ﬁiﬁ)—i—(? and G(m):;—

and the solution to the second problem is

1 -1 1
wlz,t) =1 {1+(x+ct)2 " 1+(w—0t)2} '

The solution to the original initial value boundary value problem is then

1 2 P 1 _1 1
,t) = t ) == [ —(x+ct) —(z—ct) ] 4
u(@,t) = v(z, 1) twlz,t) = 5 |e +e vl ey provapes Ak wy oy

Question 3. [p 24, #16]
Suppose that f is T-periodic and let F' be an antiderivative of f, that is,

F(x) :/If(t)dt7 —00 < T < 0.

Show that F' is T-periodic if and only if the integral of f over an interval of length 7" is 0.

SOLUTION: Note that
z+T T x+T z+T
F(z+T):/ f(t)dt:/ f(t)dt—!—/ f(t)dt:F(:z:)+/ F)dt
for all z € R, and therefore F'(x + T) = F(x) for all z € R if and only if

x+T
/ F)dt =0

for all € R, that is, if and only if the integral of f over any interval of length 7" is 0. Since f is T-periodic,
then F' is T-periodic if and only if
T
/ f)dt =0.
0



Question 4. [p 25, #22]

Triangular Wave. Let f(z) =2 — 2 [ZF] | and consider the function
h(z) = |f(@)| = |» -2 [#]].

(a) Show that h is 2-periodic.
(b) Plot the graph of h.

(c) Generalize (a) by finding a closed formula that describes the 2p-periodic triangular wave
g(x) = x| if —p<a<p,

and
g(x + 2p) = g(x) otherwise.

SOLUTION: Note that if we can show that
f@) = o —2[=]
is 2-periodic, then for any = € R, we have
Mz +2) = [f(x+2)] = [f(2)| = h(z)

for all x € R, so that h is also 2-periodic.

(a) Now,
f(x+2):m+2_2{(w+§)+1]
=w+2—2{x;1+1]
—r+2-2 [”““2”]“)
of]
= f(z)

and f is 2-periodic, and from the remark above h = | f] is also 2-periodic.
(b) Since f(z) =z for —1 < & < 1, then h(z) = |z| for —1 < & < 1, and the graph of h is shown below.
h
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(c) In order to find a 2p-periodic triangular wave, we use the 2p-periodic function

x—i—p}

f(sc)—z—2p[ .

and note that f(x) = x on the interval —p < z < p. We leave it to you to check, exactly as in part (a),
that this is 2p-periodic and that f(z) =z for —p < x < p. Therefore,

r+p
x_2p[ 2p ”

g(z) =

is a 2p-periodic triangular wave which is equal to |x| on the interval —p < z < p.

Question 5. [p 35, #6]

The function f is a 2m-periodic function and on the interval —7m < z < 7, we have

1 if 0<z<m/2,
f(z) = 0 it w/2<|z|<m,
-1 it —7/2<z<0.

21
(a) Show that the Fourier series for f is given by = >~ — (1 — cos 2F) sin na:.
T pn=1MN

(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.
SOLUTION:
(a) Note that f is an odd function on the interval —m < x < 7, so that

1 (7

),

ag = f(z)dx =0,

and Loy
an = — f(z) cosnzdx =0,
™ —T

forn=1,2,....
We use Euler’s formula to calculate the b,

f(z)sinnz dx

—T

0 1 71'/2
/ (—1)sinnz dz + —/ sin nx dx
0

—7/2 ™

/2
/ sin nx dx
0

|: 1 :| /2
—— COSNIT
n

= [1 — cos %}

S

3

I
Jlv [~ J|=

3w

0

S

and the Fourier series is

2 1 — cos .

—g — = ginnax.

T n
n=1

nm
2



(b) The Fourier series of the graph of f on the interval —7 < x < 7 is shown below.

f
[ S—

—T/2 .

-7 . 0z o *

—_

Note that the original function f is piecewise smooth and has only a finite jump discontinuity at x = 0
and x = £7/2, thus, from the Fourier Series Representation Theorem, the Fourier series of f will
converge to 0 at all points © = 2nw, n = 0,41, +2,43,..., and for all points (2n + 1)7/2, the Fourier
series of f will converge to (—1)"7/2, n =0,£1,+2,43,.... The rest of the graph of the Fourier series

can be obtained by translating this graph by an integer multiple of 27 in the z-direction.

Question 6. [p 35, #8]|

The function f is 2m-periodic and on the interval —m < 2 < 7, we have f(x) = |cosx|.

2 4
(a) Show that the Fourier series for f is given by — — —
T T

SOLUTION:

(a) Note that f an even function since

s (-1
n=1 4n? —1

(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.

cos2nx.

f(=z) = |cos(=z)| = [cosz| = f(x)

for all x € R, therefore b, = 0 for all n > 1, and we only need to compute a,, for n > 0.

1 T 1 T 1 /2 T

ap = — |cosz|dx = — |cosz|dx = — cosz dx — cosz dx
21 ) _p T Jo T Jo /2
1. 71

Now,

T 1 1

= —sinz
T

— —sinx
T

0 /2

and for n > 1, since cosnz is also an even function, we have

1 (7 2 [T
an:—/ |cosx|cosn:z:d;z::—/ | cos z| cos nx dx
T ™ Jo

—T

2 71'/2 2 s
:—/ coszcosnmdz——/
T Jo T Jr/2

2 71'/2 2 ™
a1:—/ coszxd:c——/ cos® x dx
™ Jo ™ Jr)2

2 71'/2 1 1 ™
:—/ — + —cos2x dm—z/
™ Jo 2 2 ™ 7.‘./2

If n =1, then

I
3w
ro| 3
|
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|
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|
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cos x cos nx dx.

1 1
(5 + 3 cos 21‘) dx



Now,
2 cosz cosnz = cos(n + 1)z + cos(n — 1)z

so that for n # 1, we have

2 [T/ 1 [ 1 [si Dr/2  sin(n — 1)7/2]
- / cosx cosnxrdr = — / (cos(n+1)x + cos(n —1)x)de = — sin(n + L/ + sin(n — L/ )
T Jo T Jo T | n+1 n—1 |
and

2 (7 1 [ 1 [si 1)m/2 i - 1)7w/2]
- / cosx cosnrdr = — / (cos(n + 1)z + cos(n — 1)z)de = —— sin(n + L/ sin(n — L/ .
T Jr /2 T Jr /2 T | n+1 n—1

For n # 1, we have

2 [sin(n+ 1)7/2  sin(n — 1)7/2
Qn = )
T n+1 n—1
and if n is odd, then a,, = 0.

However, if n is even, say n = 2k, then

2 [sin(2k + 1)7/2  sin(2k — 1)7/2
“”“‘E{ 2% + 1 2% — 1 ]

_2[(=DF  (=DF

_E[zkﬂ_zk—l]

_ 4 (=P

T owAk2 -1

and the Fourier series is

- 2 4 (—1)F
ao—i—;agkcosle:;+;;4(1€2_)16052kx.

(b) Since f(—m) = f(n), then the piecewise smooth 27-periodic function with f(x) = |cosz|, — 7 <x <7
is continuous at each = € R, and therefore the Fourier series converges to f(z) for each z € R.

Question 7. [p 45, #4]

The function f is 2p-periodic and is given on the interval —p < x < p by f(z) = 22. Show that the Fourier
series of f is given by
P 4p°

1 1
T T 3 |08 (rx/p) — o3 €08 (2mx/p) + 33 €08 (3mx/p) — +---

and find its values at the points of discontinuity of f.

SoLuTION: Note that since f(p) = p* = (—p)? = f(—p), then the piecewise smooth 2p-periodic function is
continuous everywhere, and so has no points of discontinuity.

Also, since f is an even function, then b, = 0 for all n > 1, and the Fourier series for f has only cosine
terms:

ap + Z ap, cos (nmx/p)
n=1
2

1 [P P
where ag = —/ f(z)dz and a, = —/ f(x) cos (nmx/p) dx for n > 1.
PJo D Jo



In order to calculate the coefficients a,,, we have

P 2

1 [P 123
CL():—/ xde:—x— :p—.
P Jo P33l 3
For n > 1, we integrate by parts twice to get
2 [P 2 L) P
an, = —/ z? cos (nma/p) dor = = [ﬂﬁ sin (nmx/p) | — _p/ x sin (nwa/p) dx}
PJo p o N7 Jo
4 [P 4 b P
= —/ xsin (nrx/p) de = — [—ﬁxcos (nwx/p) | + i/ cos (nmz/p) d:z:]
nm Jo nmw nmw 0 nm Jo
4p? "
= e
forn=1,2,3,.... The Fourier series of f is
2 4p? 1 1
% - % [cos (mx/p) — 2 €08 (2mx/p) + 32 008 (3mx/p) — +- ] )

and since f is piecewise smooth and continuous everywhere, the Fourier series given above converges to f(x)
for each x € R.

Question 8. [p 45, #28]

The function f is 2p-periodic and is given on the interval —p < x < p by f(z) = x. Show that the Fourier
series of f is given by
n+1

o0
2p
—= sin (nmx
— Z (nmz/p)
by differentiating the Fourier series in the previous problem term by term. Justify your work.
SOLUTION: Since the 2p-periodic fuction F(z) in the previous section is piecewise smooth and continuous

everywhere, the Fourier series converges to the function everywhere, and

e n+1
F(zx) = % — ﬂ_i Z cos (nmz/p)

n=1

where F(x) = 22 for —p < 2 < p. Since this function also has a piecewise smooth derivative, and

Fl(z)=2x=2" f(x)

for —p < x < p, then the coeflicients in the Fourier series of F’(z) can be obtained from Euler’s formulas,
or, they can be obtained by differentiating the above series term-by-term. Therefore, the Fourier series of
F'(x) is given by

"+1 n+1

4p* p <
- Z s1n(n7rw/p - g sin (nmz/p) ,

n=
and the Fourier series of f(z) is
n+1

?p Z sin (nmz/p) ,

which converges to f(x) for all  # +np, and to 0 for x = +np.



Question 9. [p 66, #12]

Obtain the expansion

inh = (="
ear = TG Z (2 ) 5 (acosnx — nsinnz)
™ —.a +n

valid for all real numbers a # 0, and all —7 < z < 7.

SoLuTION: If f(x) is a 2m-periodic piecewise smooth function, the complex form of the Fourier series of f(z)

18
oo

E Cnelnll)

n=—oo

where the Fourier coefficients are given by

1 [ ,
= — t)e " d.
Cn =5 _Wf( )e

Here the N'*! partial sum
N

Sn(z) = Z cpe™®

n=—N
is the same as the usual partial sum (check this).
Now, if f(z) = e** for —m < x < 7, then

™ (a—in)x |™
. 1 eaxefinz dI: 1 €

2 J_, 2T a—1in

—T

1 e(a—in)ﬂ' _ e—(a—in)?r 1 ea(_l)n _ e—a(_l)n

2T a—1in 2T a—1n

(=1)"sinh7a  (—1)"(a +in)sinhma

m(a —in) m(a? + n?)

)

and the Fourier series of f is

(acosnx — nsinnz),

sinh ra i (-1)"(a+in) ,,., sinhwa i (=™
_— _— e =

™~ (a®+n?) T — a’+n?
where we used the fact that

(a+in)e™ = (a4 in)(cosnx + isinnz) = (acosnx — nsinnz) + i(asin ne 4+ n cosnx),

and the fact that the Fourier series of a real valued function is real valued, so that

o0 _1 n
Z (2 +) 5 (asinnx + ncosnz) = 0.
a’+n

n=—oo

Since the function f is piecewise smooth and is continuous for —7 < z < 7, then we have

inh o~ (=1)"
ear = TG E (2 ) 5 (acosnx — nsinnz)
™ —.a +n

for -t <z <.



Question 10.
Establish the identity

1_ n+1
1—|—Z—|—Z2—|—~-~+Zn:#
1—-=2

and then use it to derive Lagrange’s trigonometric identity:

(= #1)

1—|—cos€—|—cos20+---+cosn9:l—i—w

2 2 sin (0/2) (0< 8 <2m).

SOLUTION: If z # 1, then

A—2)A4z+22 4+ 2")=14+z24+22 4+ F 2" — (2 4+ 22+ 2"

=1-— "
so that ) .
LT E a1
142422420 = 1-=2
n+1 if z=1.

Taking z = e, where 0 < # < 27, then z # 1, so that

14+ e 420 ... enif — ﬂ
1—e?
1— e(n+1)i9

—eif/2 (¢i0/2 — ¢=i0/2)

_e—i0/2 (1 _ e(n+1)i9)

2 sin (6/2)

i (e—i9/2 _ e(n+%)i9>

2sin (0/2)

+sin(n+%)9

1 i
2T 2sm(0/2) +QSin(G/2)(COS(9/2)—cos(n—i—%)&)

Equating real and imaginary parts, we have

1 sin(n+21)0
1—|—c0s0—|—c0529+~~—|—cosn9_§+2S(,m7(9/22))

for 0 < 6 < 27, and as an added bonus,

cos (n—|— %) 0

1
sinf +sin20 + -+ sinnf = 5 cot (6/2) — =2 s

for 0 < 6 < 27.



