MATH 300 Fall 2004
Advanced Boundary Value Problems I
Solutions to Sample Final Exam
Friday December 3, 2004

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. Given the function

$$
f(x)=\cos \frac{\pi}{a} x, \quad 0 \leq x<a
$$

find the Fourier sine series for f.
Solution:
Writing $f(x)=\cos \frac{\pi}{a} x \sim \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{a} x$, the coefficients b_{n} in the Fourier sine series are computed as follows:

$$
\begin{aligned}
b_{n} & =\frac{2}{a} \int_{0}^{a} \cos \frac{\pi}{a} x \sin \frac{n \pi}{a} x d x=\frac{1}{a} \int_{0}^{a}\left(\sin \frac{(n+1) \pi}{a} x+\sin \frac{(n-1) \pi}{a} x\right) d x \\
& =\frac{1}{\pi}\left(-\left.\frac{1}{n+1} \cos \frac{(n+1) \pi}{a} x\right|_{0} ^{a}\right)+\frac{1}{\pi}\left(-\left.\frac{1}{n-1} \cos \frac{(n-1) \pi}{a} x\right|_{0} ^{a}\right) \\
& =\frac{1}{\pi(n+1)}\left((-1)^{n}+1\right)+\frac{1}{\pi(n-1)}\left((-1)^{n}+1\right)=\frac{1+(-1)^{n}}{\pi}\left(\frac{1}{n+1}+\frac{1}{n-1}\right) .
\end{aligned}
$$

Therefore,

$$
b_{n}=\left\{\begin{array}{cl}
\frac{4 n}{\pi\left(n^{2}-1\right)} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd, } n \geq 3
\end{array}\right.
$$

If $n=1$,

$$
b_{1}=\frac{2}{a} \int_{0}^{a} \sin \frac{\pi}{a} x \cos \frac{\pi}{a} x d x=\left.\frac{1}{a} \sin ^{2} \frac{\pi}{a} x\right|_{0} ^{a}=0
$$

The Fourier sine series for f is therefore

$$
\cos \frac{\pi}{a} x \sim \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n}{4 n^{2}-1} \sin \frac{2 n \pi}{a} x
$$

for $0 \leq x<a$.

Question 2. Let

$$
f(x)=\left\{\begin{array}{cl}
\cos x & |x|<\pi \\
0 & |x|>\pi
\end{array}\right.
$$

(a) Find the Fourier integral of f.
(b) For which values of x does the integral converge to $f(x)$?
(c) Evaluate the integral

$$
\int_{0}^{\infty} \frac{\lambda \sin \lambda \pi \cos \lambda x}{1-\lambda^{2}} d \lambda
$$

for $-\infty<x<\infty$.
Solution:
(a) The function

$$
f(x)=\left\{\begin{array}{cc}
\cos x & |x|<\pi \\
0 & |x|>\pi
\end{array}\right.
$$

is even, piecewise smooth, and is continuous at every $x \in(-\infty, \infty)$ except at $x= \pm \pi$, therefore from Dirichlet's theorem the Fourier integral representation of f converges to $f(x)$ for all $x \neq \pm \pi$, and

$$
f(x) \sim \int_{0}^{\infty} A(\lambda) \cos \lambda x d \lambda
$$

where

$$
\begin{aligned}
A(\lambda) & =\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos \lambda x d x=\frac{2}{\pi} \int_{0}^{\pi} \cos x \cos \lambda x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}\{\cos (\lambda+1) x+\cos (\lambda-1) x\} d x \\
& =\frac{1}{\pi}\left\{\left.\frac{\sin (\lambda+1) x}{\lambda+1}\right|_{0} ^{\pi}+\left.\frac{\sin (\lambda-1) x}{\lambda-1}\right|_{0} ^{\pi}\right\} \\
& =\frac{1}{\pi} \frac{\sin (\lambda+1) \pi}{\lambda+1}+\frac{1}{\pi} \frac{\sin (\lambda-1) \pi}{\lambda-1} \\
& =\frac{2 \lambda}{\pi} \frac{\sin \lambda \pi}{1-\lambda^{2}} .
\end{aligned}
$$

The Fourier integral representation of f is therefore

$$
f(x) \sim \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda \pi \cos \lambda x}{1-\lambda^{2}} d \lambda
$$

(b) From Dirichlet's theorem, the integral converges to $f(x)$ for all $x \neq \pm \pi$, and converges to $-\frac{1}{2}$ for $x= \pm \pi$.
(c) Therefore, we have

$$
\int_{0}^{\infty} \frac{\lambda \sin \lambda \pi \cos \lambda x}{1-\lambda^{2}} d \lambda=\left\{\begin{array}{ccl}
\frac{\pi}{2} \cos x & \text { for } & |x|<\pi \\
0 & \text { for } & |x|>\pi \\
-\frac{\pi}{4} & \text { for } & x= \pm \pi
\end{array}\right.
$$

Question 3. Let \mathcal{F}_{c} denote the Fourier cosine transform and \mathcal{F}_{s} denote the Fourier sine transform. Assume that $f(x)$ and $x f(x)$ are both integrable.
(a) Show that

$$
\mathcal{F}_{c}(x f(x))=\frac{d}{d \omega} \mathcal{F}_{s}(f(x))
$$

(b) Show that

$$
\mathcal{F}_{s}(x f(x))=-\frac{d}{d \omega} \mathcal{F}_{c}(f(x))
$$

Solution:

(a) From the definition of the Fourier sine transform, we have

$$
\frac{d}{d \omega} \mathcal{F}_{s}(f(x))=\frac{d}{d \omega}\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin \omega t d t\right]
$$

and differentiating under the integral sign,

$$
\begin{aligned}
\frac{d}{d \omega} \mathcal{F}_{s}(f(x)) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \frac{d}{d \omega}(\sin \omega t) d t \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} t f(t) \cos \omega t d t \\
& =\mathcal{F}_{c}(x f(x))
\end{aligned}
$$

and therefore

$$
\frac{d}{d \omega} \mathcal{F}_{s}(f(x))=\mathcal{F}_{c}(x f(x))
$$

as required.
(b) From the definition of the Fourier cosine transform, we have

$$
\frac{d}{d \omega} \mathcal{F}_{c}(f(x))=\frac{d}{d \omega}\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos \omega t d t\right]
$$

and differentiating under the integral sign,

$$
\begin{aligned}
\frac{d}{d \omega} \mathcal{F}_{c}(f(x)) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \frac{d}{d \omega}(\cos \omega t) d t \\
& =-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} t f(t) \sin \omega t d t \\
& =-\mathcal{F}_{s}(x f(x))
\end{aligned}
$$

and therefore

$$
\frac{d}{d \omega} \mathcal{F}_{c}(f(x))=-\mathcal{F}_{s}(x f(x))
$$

as required.

Question 4. Chebyshev's differential equation reads

$$
\begin{aligned}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\lambda y & =0, \quad-1<x<1 \\
y(1) & =1, \\
\left|y^{\prime}(1)\right| & <\infty
\end{aligned}
$$

(a) Divide by $\sqrt{1-x^{2}}$ and bring the differential equation into Sturm-Liouville form. Decide if the resulting Sturm-Liouville problem is regular or singular.
(b) For $n \geq 0$, the Chebyshev polynomials are defined as follows:

$$
T_{n}(x)=\cos (n \operatorname{arc} \cos x), \quad-1 \leq x \leq 1
$$

Show that $T_{n}(x)$ is an eigenfunction of this Sturm-Liouville problem and for each $n \geq 0$ find the corresponding eigenvalue.
Hint: If $v=\arccos x$, then $\cos v=x$, and $v^{\prime}=-\frac{1}{\sin v}=-\frac{1}{\left(1-x^{2}\right)^{1 / 2}}$.
(c) Show that

$$
\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\left(1-x^{2}\right)^{1 / 2}} d x=0
$$

for $m \neq n$, so that these eigenfunctions are orthogonal on the interval $[-1,1]$ with respect to the weight function $w(x)=\frac{1}{\left(1-x^{2}\right)^{1 / 2}}$.

Solution:

(a) We can rewrite the differential equation as

$$
\left(\left(1-x^{2}\right)^{1 / 2} y^{\prime}\right)^{\prime}+\frac{\lambda y}{\left(1-x^{2}\right)^{1 / 2}}=0
$$

which is the self-adjoint form of the Sturm-Liouville problem, with

$$
p(x)=\left(1-x^{2}\right)^{1 / 2}, \quad q(x)=0, \quad r(x)=\frac{1}{\left(1-x^{2}\right)^{1 / 2}}
$$

This is clearly a singular Sturm-Liouville problem since $p(x)$ vanishes at the endpoints $x= \pm 1$, and since $r(x)$ is not defined on the closed interval $[-1,1]$ let alone continuous there. It also fails to be regular because of the boundary conditions, one of which is a boundedness condition.
(b) If $y=T_{n}(x)$, then

$$
y=\cos n k
$$

where $k=k(x)=\operatorname{arc} \cos x$, so that $x=\cos k$ and using the chain rule, we have

$$
y^{\prime}=-n \sin n k \cdot k^{\prime}=-n \sin n k \cdot\left(-\frac{1}{\sin k}\right)=\frac{n \sin n k}{\sin k}
$$

and

$$
y^{\prime \prime}=-\frac{-n^{2} \cos n k+n \sin n k \cot k}{\sin ^{2} k}=\frac{-n^{2} y}{1-x^{2}}+\frac{x y^{\prime}}{1-x^{2}}
$$

and $y=T_{n}(x)$ satisfies the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0, \quad-1<x<1$, for each $n \geq 0$. Therefore, $T_{n}(x)$ is an eigenfunction of this Sturm-Liouville problem with eigenvalue n^{2} for $n=0,1,2 \ldots$
(c) In the integral

$$
\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

make the substitution $x=\cos t$, so that

$$
d x=-\sin t d t=-\left(1-\cos ^{2} t\right)^{1 / 2} d t=-\left(1-x^{2}\right)^{1 / 2} d t
$$

that is,

$$
d t=-\frac{1}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

Therefore,

$$
\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\left(1-x^{2}\right)^{1 / 2}} d x=\int_{0}^{\pi} \cos m t \cos n t d t=0
$$

if $m \neq n$, and the Chebyshev polynomials are orthogonal on the interval $[-1,1]$ with respect to the weight function $w(x)=\frac{1}{\left(1-x^{2}\right)^{1 / 2}}$.

Question 5. Solve the following initial value problem for the damped wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}+u & =\frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =\frac{1}{1+x^{2}}, \\
\frac{\partial u}{\partial t}(x, 0) & =1 .
\end{aligned}
$$

Hint: Do not use separation, instead consider $w(x, t)=e^{t} \cdot u(x, t)$.
Solution: Note that $u(x, t)=e^{-t} \cdot w(x, t)$, so that

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{-t} \frac{\partial^{2} w}{\partial x^{2}}
$$

and

$$
\frac{\partial u}{\partial t}=-e^{-t} w+e^{-t} \frac{\partial w}{\partial t}
$$

and

$$
\frac{\partial^{2} u}{\partial t^{2}}=e^{-t} w-2 e^{-t} \frac{\partial w}{\partial t}+e^{-t} \frac{\partial^{2} w}{\partial t^{2}} .
$$

Therefore,

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}+u=e^{-t} \frac{\partial^{2} w}{\partial t^{2}},
$$

while

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{-t} \frac{\partial^{2} w}{\partial x^{2}}
$$

and if u is a solution to the original partial differential equation, then w is a solution to the equation

$$
e^{-t}\left[\frac{\partial^{2} w}{\partial t^{2}}-\frac{\partial^{2} w}{\partial x^{2}}\right]=0,
$$

and since $e^{-t} \neq 0$, then w satisfies the initial value problem

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}} & =\frac{\partial^{2} w}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0 \\
w(x, 0) & =\frac{1}{1+x^{2}} \\
\frac{\partial w}{\partial t}(x, 0) & =1
\end{aligned}
$$

From D'Alembert's equation to the wave equation, we have (since $c=1$)

$$
w(x, t)=\frac{1}{2}\left[\frac{1}{1+(x+t)^{2}}+\frac{1}{1+(x-t)^{2}}\right]+\frac{1}{2} \int_{x-t}^{x+t} 1 d s
$$

so that

$$
u(x, t)=\frac{e^{-t}}{2}\left[\frac{1}{1+(x+t)^{2}}+\frac{1}{1+(x-t)^{2}}\right]+t e^{-t}
$$

for $-\infty<x<\infty, \quad t \geq 0$.

