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Question 1. Given the function
f(x) = cos π

a x, 0 ≤ x < a

find the Fourier sine series for f.

Solution:

Writing f(x) = cos π
a x ∼

∞
∑

n=1
bn sin nπ

a x, the coefficients bn in the Fourier sine series are computed as follows:

bn =
2

a

∫ a

0

cos π
a x sin nπ

a x dx =
1

a

∫ a

0

(

sin (n+1)π
a x + sin (n−1)π

a x
)

dx

=
1

π

(

− 1

n + 1
cos (n+1)π

a x

∣

∣

∣

∣

a

0

)

+
1

π

(

− 1

n − 1
cos (n−1)π

a x

∣

∣

∣

∣

a

0

)

=
1

π(n + 1)

(

(−1)n + 1
)

+
1

π(n − 1)

(

(−1)n + 1
)

=
1 + (−1)n

π

( 1

n + 1
+

1

n − 1

)

.

Therefore,

bn =











4n

π(n2 − 1)
if n is even

0 if n is odd, n ≥ 3.

If n = 1,

b1 =
2

a

∫ a

0

sin π
a x cos π

a x dx =
1

a
sin2 π

a x

∣

∣

∣

∣

a

0

= 0.

The Fourier sine series for f is therefore

cos π
a x ∼ 8

π

∞
∑

n=1

n

4n2 − 1
sin 2nπ

a x.

for 0 ≤ x < a.



Question 2. Let

f(x) =

{

cosx |x| < π,

0 |x| > π.

(a) Find the Fourier integral of f.

(b) For which values of x does the integral converge to f(x)?

(c) Evaluate the integral
∫

∞

0

λ sin λπ cosλx

1 − λ2
dλ

for −∞ < x < ∞.

Solution:

(a) The function

f(x) =

{

cosx |x| < π

0 |x| > π

is even, piecewise smooth, and is continuous at every x ∈ (−∞,∞) except at x = ±π, therefore from
Dirichlet’s theorem the Fourier integral representation of f converges to f(x) for all x 6= ±π, and

f(x) ∼
∫

∞

0

A(λ) cos λx dλ,

where

A(λ) =
2

π

∫

∞

0

f(x) cosλx dx =
2

π

∫ π

0

cosx cos λx dx

=
1

π

∫ π

0

{

cos(λ + 1)x + cos(λ − 1)x

}

dx

=
1

π

{

sin(λ + 1)x

λ + 1

∣

∣

∣

∣

π

0

+
sin(λ − 1)x

λ − 1

∣

∣

∣

∣

π

0

}

=
1

π

sin(λ + 1)π

λ + 1
+

1

π

sin(λ − 1)π

λ − 1

=
2λ

π

sin λπ

1 − λ2
.

The Fourier integral representation of f is therefore

f(x) ∼ 2

π

∫

∞

0

λ sin λπ cosλx

1 − λ2
dλ.

(b) From Dirichlet’s theorem, the integral converges to f(x) for all x 6= ±π, and converges to − 1
2 for x = ±π.

(c) Therefore, we have

∫

∞

0

λ sin λπ cosλx

1 − λ2
dλ =















π
2 cosx for |x| < π,

0 for |x| > π,

−π
4 for x = ±π.



Question 3. Let Fc denote the Fourier cosine transform and Fs denote the Fourier sine transform. Assume
that f(x) and xf(x) are both integrable.

(a) Show that

Fc(xf(x)) =
d

dω
Fs(f(x)).

(b) Show that

Fs(xf(x)) = − d

dω
Fc(f(x)).

Solution:

(a) From the definition of the Fourier sine transform, we have

d

dω
Fs(f(x)) =

d

dω

[

√

2

π

∫

∞

0

f(t) sinωt dt

]

,

and differentiating under the integral sign,

d

dω
Fs(f(x)) =

√

2

π

∫

∞

0

f(t)
d

dω
(sin ωt) dt

=

√

2

π

∫

∞

0

tf(t) cosωt dt

= Fc(xf(x)),

and therefore
d

dω
Fs(f(x)) = Fc(xf(x))

as required.

(b) From the definition of the Fourier cosine transform, we have

d

dω
Fc(f(x)) =

d

dω

[

√

2

π

∫

∞

0

f(t) cosωt dt

]

,

and differentiating under the integral sign,

d

dω
Fc(f(x)) =

√

2

π

∫

∞

0

f(t)
d

dω
(cosωt) dt

= −
√

2

π

∫

∞

0

tf(t) sin ωt dt

= −Fs(xf(x)),

and therefore
d

dω
Fc(f(x)) = −Fs(xf(x))

as required.



Question 4. Chebyshev’s differential equation reads

(1 − x2)y′′ − xy′ + λy = 0, −1 < x < 1

y(1) = 1,

|y′(1)| < ∞

(a) Divide by
√

1 − x2 and bring the differential equation into Sturm-Liouville form. Decide if the resulting
Sturm-Liouville problem is regular or singular.

(b) For n ≥ 0, the Chebyshev polynomials are defined as follows:

Tn(x) = cos(n arc cos x), −1 ≤ x ≤ 1.

Show that Tn(x) is an eigenfunction of this Sturm-Liouville problem and for each n ≥ 0 find the
corresponding eigenvalue.

Hint: If v = arc cos x, then cos v = x, and v′ = − 1

sin v
= − 1

(1 − x2)1/2
.

(c) Show that
∫ 1

−1

Tm(x)Tn(x)

(1 − x2)1/2
dx = 0

for m 6= n, so that these eigenfunctions are orthogonal on the interval [−1, 1] with respect to the weight

function w(x) =
1

(1 − x2)1/2
.

Solution:

(a) We can rewrite the differential equation as

(

(1 − x2)1/2y′

)

′

+
λy

(1 − x2)1/2
= 0,

which is the self-adjoint form of the Sturm-Liouville problem, with

p(x) = (1 − x2)1/2, q(x) = 0, r(x) =
1

(1 − x2)1/2
.

This is clearly a singular Sturm-Liouville problem since p(x) vanishes at the endpoints x = ±1, and
since r(x) is not defined on the closed interval [−1, 1] let alone continuous there. It also fails to be
regular because of the boundary conditions, one of which is a boundedness condition.

(b) If y = Tn(x), then
y = cosnk

where k = k(x) = arc cos x, so that x = cos k and using the chain rule, we have

y′ = −n sinnk · k′ = −n sinnk ·
(

− 1

sin k

)

=
n sinnk

sin k
,

and

y′′ = −−n2 cosnk + n sinnk cot k

sin2 k
=

−n2y

1 − x2
+

xy′

1 − x2
,

and y = Tn(x) satisfies the differential equation (1 − x2)y′′ − xy′ + n2y = 0, −1 < x < 1, for each
n ≥ 0. Therefore, Tn(x) is an eigenfunction of this Sturm-Liouville problem with eigenvalue n2 for
n = 0, 1, 2 . . . .



(c) In the integral
∫ 1

−1

Tm(x)Tn(x)

(1 − x2)1/2
dx

make the substitution x = cos t, so that

dx = − sin t dt = −(1 − cos2t)1/2 dt = −(1 − x2)1/2 dt

that is,

dt = − 1

(1− x2)1/2
dx.

Therefore,
∫ 1

−1

Tm(x)Tn(x)

(1 − x2)1/2
dx =

∫ π

0

cosmt cosnt dt = 0

if m 6= n, and the Chebyshev polynomials are orthogonal on the interval [−1, 1] with respect to the

weight function w(x) =
1

(1 − x2)1/2
.

Question 5. Solve the following initial value problem for the damped wave equation

∂2u

∂t2
+ 2

∂u

∂t
+ u =

∂2u

∂x2

u(x, 0) =
1

1 + x2
,

∂u

∂t
(x, 0) = 1.

Hint: Do not use separation, instead consider w(x, t) = et · u(x, t).

Solution: Note that u(x, t) = e−t · w(x, t), so that

∂2u

∂x2
= e−t ∂

2w

∂x2

and
∂u

∂t
= −e−tw + e−t ∂w

∂t

and
∂2u

∂t2
= e−tw − 2e−t ∂w

∂t
+ e−t ∂

2w

∂t2
.

Therefore,
∂2u

∂t2
+ 2

∂u

∂t
+ u = e−t ∂

2w

∂t2
,

while
∂2u

∂x2
= e−t ∂

2w

∂x2

and if u is a solution to the original partial differential equation, then w is a solution to the equation

e−t

[

∂2w

∂t2
− ∂2w

∂x2

]

= 0,



and since e−t 6= 0, then w satisfies the initial value problem

∂2w

∂t2
=

∂2w

∂x2
, −∞ < x < ∞, t > 0,

w(x, 0) =
1

1 + x2
,

∂w

∂t
(x, 0) = 1.

From D’Alembert’s equation to the wave equation, we have (since c = 1)

w(x, t) =
1

2

[

1

1 + (x + t)2
+

1

1 + (x − t)2

]

+
1

2

∫ x+t

x−t

1 ds,

so that

u(x, t) =
e−t

2

[

1

1 + (x + t)2
+

1

1 + (x − t)2

]

+ te−t,

for −∞ < x < ∞, t ≥ 0.


