Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [15 pts]

Find the values of λ^{2} for which the boundary value problem

$$
\begin{aligned}
\frac{d^{2} u}{d x^{2}}+\lambda^{2} u & =0, \quad 0<x<\frac{\pi}{2} \\
u(0) & =0 \\
\int_{0}^{\frac{\pi}{2}} u(t) d t & =0
\end{aligned}
$$

has non-trivial solutions.
Solution: We consider two cases:
case (i): $\lambda=0$
In this case, the general solution to $\frac{d^{2} u}{d x^{2}}=0$ is given by $u(x)=A x+B$, and $u(0)=0$ implies that $B=0$, so that $u(x)=A x$.
The condition $\int_{0}^{\frac{\pi}{2}} u(t) d t=0$ implies that

$$
\int_{0}^{\frac{\pi}{2}} A t d t=\left.A \frac{t^{2}}{2}\right|_{0} ^{\frac{\pi}{2}}=A \frac{\pi^{2}}{8}=0
$$

which implies that $A=0$, and the boundary value problem has only the trivial solution in this case.
case (ii): $\lambda \neq 0$
In this case, the general solution to $\frac{d^{2} u}{d x^{2}}+\lambda^{2} u=0$ is given by $u(x)=A \cos \lambda x+B \sin \lambda x$, and $u(0)=0$ implies that $A=0$ so that $u(x)=B \sin \lambda x$.
The condition $\int_{0}^{\frac{\pi}{2}} u(t) d t=0$ implies that

$$
\int_{0}^{\frac{\pi}{2}} B \sin \lambda t d t=-\left.\frac{B}{\lambda} \cos \lambda t\right|_{0} ^{\frac{\pi}{2}}=\frac{B}{\lambda}\left(1-\cos \frac{\lambda \pi}{2}\right)=0
$$

and so either $B=0$ or $\cos \frac{\lambda \pi}{2}=1$.
Therefore, a nontrivial solution exists if and only if we have $\cos \frac{\lambda \pi}{2}=1$, that is, $\frac{\lambda \pi}{2}=2 \pi n$, where $n \neq 0$ is an integer. The values of λ^{2} for which the boundary value problem has non-trivial solutions are

$$
\lambda_{n}^{2}=16 n^{2}
$$

for $n=1,2,3, \ldots$.

Question 2. [20 pts]

Let $f(x)=\cos ^{2} x, \quad 0 \leq x \leq \pi$, and $f(x+2 \pi)=f(x)$ otherwise.
(a) Find the Fourier sine series for f on the interval $[0, \pi]$.

Hint: For $n \geq 1, \quad \int \cos ^{2} x \sin n x d x=-\frac{1}{2 n} \cos n x+\frac{1}{4} \int[\sin (n+2) x+\sin (n-2) x] d x$.
(b) Find the Fourier cosine series for f on the interval $[0, \pi]$.
(c) For which values of x in $[0, \pi]$ do the series in (a) and (b) converge to $f(x)$?

Solution:
(a) (White) Writing $f(x)=\cos ^{2} x \sim \sum_{n=1}^{\infty} b_{n} \sin n x$, the coefficients b_{n} in the Fourier sine series are computed as follows:

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ^{2} x \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) \sin n x d x \\
& =\frac{1}{\pi}\left(-\left.\frac{1}{n} \cos n x\right|_{0} ^{\pi}\right)+\frac{1}{\pi} \int_{0}^{\pi} \cos 2 x \sin n x d x \\
& =\frac{1}{n \pi}\left(1-(-1)^{n}\right)+\frac{1}{2 \pi} \int_{0}^{\pi}[\sin (n-2) x+\sin (n+2) x] d x \\
& =\frac{1-(-1)^{n}}{2 \pi}\left(\frac{2}{n}+\frac{1}{n-2}+\frac{1}{n+2}\right)=0
\end{aligned}
$$

if $n \neq 2$ is even, while if $n=2$,

$$
\begin{aligned}
b_{2} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ^{2} x \sin 2 x d x=\frac{4}{\pi} \int_{0}^{\pi} \sin x \cos ^{3} x d x \\
& =-\left.\frac{4}{\pi} \cos ^{4} x\right|_{0} ^{\pi}=0
\end{aligned}
$$

Therefore, $b_{n}=0$ for all even $n \geq 2$.
If n is odd,

$$
\begin{aligned}
b_{n} & =\frac{2}{n \pi}+\frac{1}{\pi}\left[\frac{1}{n-2}+\frac{1}{n+2}\right] \\
& =\frac{2}{n \pi}+\frac{1}{\pi} \frac{2 n}{n^{2}-4}
\end{aligned}
$$

The Fourier series for f is therefore

$$
\cos ^{2} x \sim \frac{2}{\pi} \sum_{n=1}^{\infty}\left\{\frac{1}{2 n-1}+\frac{2 n-1}{(2 n-1)^{2}-4}\right\} \sin (2 n-1) x
$$

for $0<x<\pi$.
(b) The Fourier cosine series for f is

$$
\cos ^{2} x \sim \frac{1}{2}+\frac{1}{2} \cos 2 x
$$

and this can be checked by integrating to find the a_{n} 's.
(c) From Dirichlet's theorem, the Fourier sine series in part (a) converges to $\cos ^{2} x$ for all $x \in(0, \pi)$ and converges to 0 for $x=0$ and $x=\pi$. The Fourier cosine series in part (b) converges to $\cos ^{2} x$ for all $x \in[0, \pi]$ since the series is actually finite.
(a) (BLUE) Writing $f(x)=\sin ^{2} x \sim \sum_{n=1}^{\infty} b_{n} \sin n x$, the coefficients b_{n} in the Fourier sine series are computed as follows:

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} x \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right) \sin n x d x \\
& =\frac{1}{\pi}\left(-\left.\frac{1}{n} \cos n x\right|_{0} ^{\pi}\right)-\frac{1}{\pi} \int_{0}^{\pi} \cos 2 x \sin n x d x \\
& =\frac{1}{n \pi}\left(1-(-1)^{n}\right)-\frac{1}{2 \pi} \int_{0}^{\pi}[\sin (n-2) x+\sin (n+2) x] d x \\
& =\frac{1-(-1)^{n}}{2 \pi}\left(\frac{2}{n}-\frac{1}{n-2}-\frac{1}{n+2}\right)=0
\end{aligned}
$$

if $n \neq 2$ is even, while if $n=2$,

$$
\begin{aligned}
b_{2} & =\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} x \sin 2 x d x=\frac{4}{\pi} \int_{0}^{\pi} \sin ^{3} x \cos x d x \\
& =-\left.\frac{4}{\pi} \sin ^{4} x\right|_{0} ^{\pi}=0
\end{aligned}
$$

Therefore, $b_{n}=0$ for all even $n \geq 2$.
If n is odd,

$$
\begin{aligned}
b_{n} & =\frac{2}{n \pi}-\frac{1}{\pi}\left[\frac{1}{n-2}+\frac{1}{n+2}\right] \\
& =\frac{2}{n \pi}-\frac{1}{\pi} \frac{2 n}{n^{2}-4}
\end{aligned}
$$

The Fourier series for f is therefore

$$
\cos ^{2} x \sim \frac{2}{\pi} \sum_{n=1}^{\infty}\left\{\frac{1}{2 n-1}-\frac{2 n-1}{(2 n-1)^{2}-4}\right\} \sin (2 n-1) x
$$

for $0<x<\pi$.
(b) The Fourier cosine series for f is

$$
\sin ^{2} x \sim \frac{1}{2}-\frac{1}{2} \cos 2 x
$$

and this can be checked by integrating to find the a_{n} 's.
(c) From Dirichlet's theorem, the Fourier sine series in part (a) converges to $\sin ^{2} x$ for all $x \in[0, \pi]$. The Fourier cosine series in part (b) converges to $\sin ^{2} x$ for all $x \in[0, \pi]$ since the series is actually finite.

Question 3. [15 pts]

Let $v(x)$ be the steady-state solution to the initial boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+r & =\frac{1}{k} \frac{\partial u}{\partial t}, \quad 0<x<a, \quad t>0 \\
u(0, t) & =T_{0}, \quad t>0 \\
\frac{\partial u}{\partial x}(a, t) & =0, \quad t>0
\end{aligned}
$$

where r is a constant. Find and solve the boundary value problem for the steady-state solution $v(x)$.
Solution: The steady-state solution $v(x)$ satisfies the boundary value problem

$$
\begin{aligned}
\frac{d^{2} v}{d x^{2}}+r & =0, \quad 0<x<a \\
v(0) & =T_{0} \\
\frac{d v}{d x}(a) & =0
\end{aligned}
$$

and the general solution to the differential equation is

$$
v(x)=-\frac{1}{2} r x^{2}+A x+B
$$

and

$$
\frac{d v}{d x}(x)=-r x+A
$$

Therefore,

$$
\begin{array}{lll}
v(0)=T_{0} & \text { implies } & B=T_{0} \\
\frac{d v}{d x}(a)=0 & \text { implies } & -r a+A=0
\end{array}
$$

so that

$$
A=r a \quad \text { and } \quad B=T_{0}
$$

The steady-state solution is therefore

$$
v(x)=-\frac{1}{2} r x^{2}+r a x+T_{0}
$$

for $0 \leq x \leq a$.

