MATH 300 Fall 2004

Advanced Boundary Value Problems I
Sample Midterm Problems
Wednesday October 20, 2004
Department of Mathematical and Statistical Sciences
University of Alberta

MATHEMATICS 300-SAMPLE MIDTERM

1. Solve the following differential equation for u

$$
\begin{aligned}
& e^{-x} \frac{d}{d x}\left(e^{x} \frac{d u}{d x}\right)=-x \quad 0<x<a \\
& u(0)=0, \quad u(a)=0
\end{aligned}
$$

2. Given the function

$$
f(x)=\left\{\begin{array}{cl}
\cos x & 0 \leq x \leq \pi \\
0 & -\pi<x<0
\end{array}\right.
$$

and $f(x+2 \pi)=f(x)$ otherwise.
(a) Find the Fourier series of f.
(b) For which values of $x \in[-\pi, \pi]$ does the Fourier series converge to f ?
3. Find all functions w for which $u(x, t)=w(x-c t)$ is a solution of the first order partial differential equation

$$
x \frac{\partial u}{\partial x}+t \frac{\partial u}{\partial t}=A u
$$

where A and c are constants.
Table of Integrals

$$
\begin{aligned}
& \int \sin \lambda x \sin \mu x d x=\frac{\sin (\mu-\lambda) x}{2(\mu-\lambda)}-\frac{\sin (\mu+\lambda) x}{2(\mu+\lambda)} \quad(\lambda \neq \mu) \\
& \int \sin \lambda x \cos \mu x d x=\frac{\cos (\mu-\lambda) x}{2(\mu-\lambda)}-\frac{\cos (\mu+\lambda) x}{2(\mu+\lambda)} \quad(\lambda \neq \mu) \\
& \int \cos \lambda x \cos \mu x d x=\frac{\sin (\mu-\lambda) x}{2(\mu-\lambda)}+\frac{\sin (\mu+\lambda) x}{2(\mu+\lambda)} \quad(\lambda \neq \mu) \\
& \int \sin ^{2} \lambda x d x=\frac{x}{2}-\frac{\sin 2 \lambda x}{4 \lambda} \\
& \int \sin \lambda x \cos \lambda x d x=\frac{\sin ^{2} \lambda x}{2 \lambda} \\
& \int \cos ^{2} \lambda x d x=\frac{x}{2}+\frac{\sin 2 \lambda x}{4 \lambda} \\
& \int x \sin \lambda x d x=\frac{\sin \lambda x}{\lambda^{2}}-\frac{x \cos \lambda x}{\lambda} \\
& \int x \cos \lambda x d x=\frac{\cos \lambda x}{\lambda^{2}}+\frac{x \sin \lambda x}{\lambda} \\
& \int e^{k x} \sin \lambda x d x=\frac{e^{k x}(k \sin \lambda x-\lambda \cos \lambda x)}{k^{2}+\lambda^{2}} \\
& \int e^{k x} \cos \lambda x d x=\frac{e^{k x}(k \cos \lambda x+\lambda \sin \lambda x)}{k^{2}+\lambda^{2}}
\end{aligned}
$$

Solutions:

1. Since $\frac{d}{d x}\left(e^{x} \frac{d u}{d x}\right)=-x e^{x}$, integrating we get

$$
e^{x} \frac{d u}{d x}=-\int x e^{x} d x+c_{1}=-\left[x e^{x}-\int e^{x} d x\right]+c_{1}
$$

therefore $e^{x} \frac{d u}{d x}=-x e^{x}+e^{x}+c_{1}$, and so $\frac{d u}{d x}=-x+1+c_{1} e^{-x}$. Integrating again,

$$
u(x)=-\frac{1}{2} x^{2}+x-c_{1} e^{-x}+c_{2}
$$

and $u(0)=0 \Longrightarrow c_{1}=c_{2}$, while $u(a)=0 \Longrightarrow c_{1}=\frac{a^{2}-2 a}{2\left(1-e^{-a}\right)}$. The solution is

$$
u(x)=-\frac{1}{2} x^{2}+x+\frac{1}{2}\left(a^{2}-2 a\right)\left(\frac{1-e^{-x}}{1-e^{-a}}\right)
$$

2. (a) Writing $f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, the coefficients in the Fourier series are given by

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \cos x d x=\left.\frac{1}{2 \pi} \sin x\right|_{0} ^{\pi}=0
$$

and for $n>1$,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{0}^{\pi} \cos x \cos n x d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}(\cos (n+1) x+\cos (n-1) x) d x=\left.\frac{1}{2 \pi} \frac{\sin (n+1) x}{n+1}\right|_{0} ^{\pi}+\left.\frac{1}{2 \pi} \frac{\sin (n-1) x}{n-1}\right|_{0} ^{\pi}=0
\end{aligned}
$$

while for $n=1$,

$$
a_{1}=\frac{1}{\pi} \int_{0}^{\pi} \cos ^{2} x d x=\frac{1}{2 \pi} \int_{0}^{\pi}(1+\cos 2 x) d x=\frac{1}{2}
$$

Also, for $n=1$,

$$
b_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x d x=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos x d x=\left.\frac{1}{2 \pi} \sin ^{2} x\right|_{0} ^{\pi}=0
$$

while for $n>1$,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{0}^{\pi} \cos x \sin n x d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}(\sin (n+1) x+\sin (n-1) x) d x=-\left.\frac{1}{2 \pi} \frac{\cos (n+1) x}{n+1}\right|_{0} ^{\pi}-\left.\frac{1}{2 \pi} \frac{\cos (n-1) x}{n-1}\right|_{0} ^{\pi} \\
& =-\frac{1}{2 \pi}\left((-1)^{n+1}-1\right)\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}=-\frac{\left((-1)^{n+1}-1\right)}{2 \pi} \frac{2 n}{n^{2}-1}
\end{aligned}
$$

and

$$
b_{n}=\left\{\begin{array}{cl}
0 & \text { if } n \text { is odd } \\
\frac{2 n}{\pi\left(n^{2}-1\right)} & \text { if } n \text { is even } .
\end{array}\right.
$$

The Fourier series for f is therefore

$$
f(x) \sim \frac{1}{2} \cos x+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{n}{4 n^{2}-1} \sin 2 n x
$$

(b) The Fourier series converges to $f(x)$ for all x in $[-\pi, \pi]$, except at $x=0, x=\pi$ and $x=-\pi$.

From Dirichlet's theorem, the series converges to $\frac{1}{2}$ at $x=0$ and converges to $-\frac{1}{2}$ at $x=\pi$ and $x=-\pi$.
5. Suppose that $u(x, t)=w(x-c t)$ is a solution to the first order partial differential equation

$$
\begin{equation*}
x \frac{\partial u}{\partial x}+t \frac{\partial u}{\partial t}=A u \tag{*}
\end{equation*}
$$

Let $\xi=x-c t$, so that

$$
\frac{\partial w}{\partial x}=\frac{d w}{d \xi} \frac{\partial \xi}{\partial x}=\frac{d w}{d \xi} \quad \text { and } \quad \frac{\partial w}{\partial t}=\frac{d w}{d \xi} \frac{\partial \xi}{\partial t}=-c \frac{d w}{d \xi}
$$

then $w=w(\xi)$ satisfies the equation

$$
(\xi+c t) \frac{d w}{d \xi}-c t \frac{d w}{d \xi}=A w \quad \text { that is } \quad \xi \frac{d w}{d \xi}=A w
$$

This is a first order linear ordinary differential equation for w, which we can write as $\frac{d w}{d \xi}-\frac{A}{\xi} w=0$ and which has as integrating factor $e^{-A \log |\xi|}$, so that $\frac{d}{d \xi}\left(e^{-A \log |\xi|} w\right)=0$.
Integrating, we have $e^{-A \log |\xi|} w(\xi)=K$, where K is a constant, therefore if $u(x, t)=w(x-c t)$ is a solution to $(*)$, then

$$
u(x, t)=K e^{A \log |x-c t|}
$$

for some constant K.

