MATH 300 Fall 2004
Advanced Boundary Value Problems I
Assignment 5
Due: Monday December 6, 2004
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 395, \#3]
Find the Fourier integral representation of the function

$$
f(x)=\left\{\begin{array}{cl}
1-\cos x & \text { if } \quad-\frac{\pi}{2}<x<\frac{\pi}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

Question 2. [p 395, \#9]
Find the Fourier integral representation of the function

$$
f(x)=\left\{\begin{array}{clc}
x & \text { if } & -1<x<1 \\
2-x & \text { if } & 1<x<2 \\
-2-x & \text { if } & 2<x<-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Question 3. [p 407, \#4]
Let

$$
f(x)= \begin{cases}x & \text { if } \quad|x|<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Plot the function $f(x)$ and find its Fourier transform.
(b) If $\widehat{f}$ is real valued, plot it; otherwise plot $|\widehat{f}|$.

Question 4. [p 407, \#10] Reciprocity relation for the Fourier transform.
(a) From the definition of transforms, explain why

$$
\mathcal{F}(f)(x)=\mathcal{F}^{-1}(f)(-x)
$$

(b) Use (a) to derive the reciprocity relation

$$
\mathcal{F}^{2}(f)(x)=f(-x)
$$

where $\mathcal{F}^{2}(f)(x)=\mathcal{F}(\mathcal{F}(f))$.
(c) Conclude the following: $f$ is even if and only if $\mathcal{F}^{2}(f)(x)=f(x)$;
$f$ is odd if and only if $\mathcal{F}^{2}(f)(x)=-f(x)$.
(d) Show that for any $f, \mathcal{F}^{4}(f)=f$.

Question 5. [p 410, \#55] Basic Properties of Convolutions.
Establish the following properties of convolutions. (These properties can be derived directly from the definitions or by using the operational properties of the Fourier transform.)
(a) $f * g=g * f$ (commutativity).
(b) $f *(g * h)=(f * g) * h$ (associativity).
(c) Let $a$ be a real number and let $f_{a}$ denote the translate of $f$ by $a$, that is,

$$
f_{a}(x)=f(x-a)
$$

Show that

$$
\left(f_{a}\right) * g=f *\left(g_{a}\right)=(f * g)_{a}
$$

This important property says that convolutions commute with translations.

## Question 6. [p 418, \#3]

Determine the solution of the following initial boundary value problem for the heat equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0, \\
& u(x, 0)=e^{-x^{2}}, \quad \\
&-\infty<x<\infty
\end{aligned}
$$

Give your answer in the form of an inverse Fourier transform.
Question 7. [p 418, \#11]
Solve the following initial boundary value problem

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0) & =f(x), \quad-\infty<x<\infty
\end{aligned}
$$

Assume that the function $f$ has a Fourier transform.
Question 8. [p 426, \#2]
Use convolutions, the error function, and operational properties of the Fourier transform to solve the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{1}{100} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0, \\
& u(x, 0)=\left\{\begin{array}{rlr}
100 & \text { if } & -2<x<0, \\
50 & \text { if } & 0<x<1, \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Question 9. [p 439, \#6]
Find the Fourier cosine transform of

$$
f(x)=\left\{\begin{array}{cll}
1-x & \text { if } & 0<x<1 \\
0 & \text { if } & x \geq 1
\end{array}\right.
$$

and write $f(x)$ as an inverse cosine transform. Use a known Fourier transform and the fact that if $f(x), x \geq 0$, is the restriction of an even function $f_{e}$, then

$$
\mathcal{F}_{c}(f)(\omega)=\mathcal{F}\left(f_{e}\right)(\omega)
$$

for all $\omega \geq 0$.
Question 10. [p 439, \#12]
Find the Fourier sine transform of

$$
f(x)=\frac{x}{1+x^{2}}, \quad x>0
$$

and write $f(x)$ as an inverse sine transform. Use a known Fourier transform and the fact that if $f(x), x \geq 0$, is the restriction of an odd function $f_{o}$, then

$$
\mathcal{F}_{s}(f)(\omega)=i \mathcal{F}\left(f_{o}\right)(\omega)
$$

for all $\omega \geq 0$.

