MATH 300 Fall 2004
Advanced Boundary Value Problems I
Assignment 4
Due: Friday November 5, 2004

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 205, \#2]
Solve the vibrating membrane problem given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=100\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right), & 0<r<1, \quad t>0 \\
u(a, t)=0, & t>0 \\
u(r, 0)=1-r^{2}, & 0<r<1 \\
\frac{\partial u}{\partial t}(r, 0)=1, & 0<r<1
\end{array}
$$

Question 2. [p 206, \#4]
Solve the vibrating membrane problem given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right), & 0<r<1, \quad t>0 \\
u(a, t)=0, & t>0 \\
u(r, 0)=0, & 0<r<1 \\
\frac{\partial u}{\partial t}(r, 0)=J_{0}\left(\alpha_{3} r\right), & 0<r<1
\end{array}
$$

Question 3. [p 331, \#2]
If $f(x)$ is an even function and $g(x)$ is an odd function, show that the set of functions $\{f(x), g(x)\}$ is orthogonal with respect to the weight function

$$
w(x)=1
$$

on any symmetric interval $[-a, a]$ containing 0 .
Question 4. [p 332, \#6]
Show that the set of functions $\left\{1,1-x, \frac{1}{2}\left(2-4 x+x^{2}\right)\right\}$ is orthogonal with respect to the weight function

$$
w(x)=e^{-x}
$$

on the interval $[0, \infty)$. (These are examples of Laguerre polynomials.)

Question 5. [p 332, \#8]
Show that the set of functions $\left\{\frac{1}{2}\left(2-4 x+x^{2}\right),-12 x+8 x^{3}\right\}$ is orthogonal with respect to the weight function

$$
w(x)=e^{-x}
$$

on the interval $[0, \infty)$.
Question 6. [p 344, \#6]
Given the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}+\left(\frac{1+\lambda x}{x}\right) y=0 \\
y(1)=0 \\
y(2)=0
\end{gathered}
$$

on the interval [1, 2], put the equation in Sturm-Liouville form and decide whether the problem is regular or singular.

Question 7. [p 344, \#8]
Given the boundary value problem

$$
\begin{gathered}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+(1+\lambda x) y=0 \\
y(-1)=0 \\
y(1)=0
\end{gathered}
$$

on the interval $[-1,1]$, put the equation in Sturm-Liouville form and decide whether the problem is regular or singular.

Question 8. [p 344, \#14]
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \\
y(-\pi)=0 \\
y(\pi)=0 \\
y^{\prime}(-\pi)=y^{\prime}(\pi) .
\end{gathered}
$$

Question 9. [p 344, \#16]
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \\
y(0)+y^{\prime}(0)=0 \\
y(2 \pi)=0
\end{gathered}
$$

Question 10. [p 344, \#22]
Show that the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}-\lambda y=0 \\
y(0)+y^{\prime}(0)=0 \\
y(1)+y^{\prime}(1)=0
\end{gathered}
$$

has one positive eigenvalue. Does this contrdict Theorem 1?

