MATH 300 Fall 2004
Advanced Boundary Value Problems I
Assignment 3
Due: Friday October 22, 2004

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 151, \#2]

Solve the problem of heat transfer in a bar of length $L=1$ with initial heat distributuion $f(x)=\cos \pi x$ and no heat loss at either end, where the thermal diffusivity is $c=1$, that is, solve the boundary-value initial-value problem below:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<1, \quad t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=0, & t>0 \\
u(x, 0)=\cos \pi x, & 0<x<1
\end{array}
$$

Question 2. [p 151, \#6]

Solve the problem of heat transfer in a bar of length $L=\pi$ and thermal diffusivity $c=1$, with initial heat distribution $u(x, 0)=\sin x$ where one end of the bar is kept at a constant temperature $u(0, t)=0$, while there is no heat loss at the other end of the bar so that $u_{x}(\pi, t)=0$, that is, solve the boundary-value initial-value problem below:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, \quad t>0 \\
u(0, t)=0, & t>0 \\
\frac{\partial u}{\partial x}(\pi, t)=0, & t>0 \\
u(x, 0)=\sin x, & 0<x<\pi
\end{array}
$$

Question 3. [p 152, \#8]
In the problem of heat transfer in a bar of length L with initial temperature distribution $f(x)$ and no heat loss at either end, show that the asymptotic temperature is constant and equals the average temperature.

Note: This involves solving the boundary-value initial-value problem

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<L, \quad t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0<x<L,
\end{array}
$$

and finding $\lim _{t \rightarrow \infty} u(x, t)$.

Question 4. [p 162, \#2]

Solve the problem of a thin elastic membrane stretched over a square frame of side 1 , where the vibrations are governed by the following two dimensional wave equation:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{\pi^{2}}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), & 0<x<1, \quad 0<y<1, \quad t>0 \\
u(0, y, t)=u(1, y, t)=0, & 0 \leq y \leq 1, \quad t \geq 0 \\
u(x, 0, t)=u(x, 1, t)=0, & 0 \leq x \leq 1, \quad t \geq 0 \\
u(x, y, 0)=\sin \pi x \sin \pi y, & 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
\frac{\partial u}{\partial t}(x, y, 0)=\sin \pi x, & 0 \leq x \leq 1, \quad 0 \leq y \leq 1
\end{array}
$$

Question 5. [p 163, \#12]

Find the temperature distribution in a thin two dimensional plate with thermal diffusivity $c=1$, in the shape of a unit square, with insulated faces and edges kept at zero temperature with an initial temperature distribution given by $f(x, y)=x y(1-x)(1-y)$ for $0 \leq x, y \leq 1$, that is, solve the boundary-value initial-value problem given below:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, & 0<x<1, \quad 0<y<1, \quad t>0 \\
u(0, y, t)=u(1, y, t)=0, & 0<y<1, \quad t>0 \\
u(x, 0, t)=u(x, 1, t)=0, & 0<x<1, \quad t>0 \\
u(x, y, 0)=x y(1-x)(1-y), & 0<x<1, \quad 0<y<1
\end{array}
$$

Question 6. [p 168, \#2]

Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, & 0<x<1, \quad 0<y<1 \\
u(x, 0)=0 & 0 \leq x \leq 1 \\
u(x, 1)=100, & 0 \leq x \leq 1 \\
u(0, y)=0 & 0 \leq y \leq 1 \\
u(1, y)=100, & 0 \leq y \leq 1
\end{array}
$$

Question 7. [p 168, \#4]
Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, & 0<x<1, \quad 0<y<1 \\
u(x, 0)=1-x & 0 \leq x \leq 1 \\
u(x, 1)=x, & 0 \leq x \leq 1 \\
u(0, y)=0 & 0 \leq y \leq 1 \\
u(1, y)=0, & 0 \leq y \leq 1
\end{array}
$$

Question 8. [p 169, \#8]
Approximate the temperature at the center of the plate in Question 7.
Question 9. [p 198, \#2]
Compute the Laplacian of the function

$$
u(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)
$$

in an appropriate coordinate system and decide if the given function satisfies Laplace's equation $\nabla^{2} u=0$.
Question 10. [p 198, \#6]
Compute the Laplacian of the function

$$
u(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

in an appropriate coordinate system and decide if the given function satisfies Laplace's equation $\nabla^{2} u=0$.

