

MATH 300 Fall 2004 **Advanced Boundary Value Problems I Assignment 2** Due: Friday October 8, 2004

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 77, #26]

Solve the initial value problem

$$y'' + 9y = F(t)$$
$$y(0) = 0$$
$$y'(0) = 0$$

where F(t) is the 2π -periodic input function given by its Fourier series $F(t) = \sum_{n=1}^{\infty} \left[\frac{\cos nt}{n^2} + (-1)^n \frac{\sin nt}{n} \right].$

Question 2. [p 107, #8]

Verify that the function

$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

is a solution to the three dimensional Laplace equation $u_{xx} + u_{yy} + u_{zz} = 0.$

Question 3. $[p \ 123, \#2]$

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= \sin \pi x \cos \pi x, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= 0, \quad 0 < x < 1, \end{aligned}$$

using the Method of Separation of Variables.

Question 4. [p 123, #4]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= \sin \pi x + \frac{1}{2} \sin 3\pi x + 3 \sin 7\pi x, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= \sin 2\pi x, \quad 0 < x < 1, \end{aligned}$$

using the Method of Separation of Variables.

Question 5. [p 124, #12]

Damped vibrations of a string. In the presence of resistance proportional to velocity, the one dimensional wave equation becomes

$$\frac{\partial^2 u}{\partial t^2} + 2k \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \quad 0 < x < L, \ t > 0.$$

Solve this equation subject to the boundary conditions

$$u(0,t) = 0$$
 and $u(L,t) = 0$ for all $t > 0$,

and the initial conditions

$$u(x,0) = f(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = g(x)$ for $0 < x < L$

as follows:

(a) Assume a product solution of the form u(x,t) = X(x)T(t), and derive the following equations for X and T,

$$\begin{aligned} X'' + \mu^2 X &= 0, \quad X(0) = 0, \quad X(L) = 0, \\ T'' + 2kT' + (\mu c)^2 T &= 0, \end{aligned}$$

where μ is the separation constant.

- (b) Show that $\mu = \mu_n = \frac{n\pi}{L}$ and $X = X_n = \sin(n\pi x/Li)$, $n = 1, 2, \dots$
- (c) Solve the equation $T''_n + 2kT'_n + (n\pi c/L)^2 T_n = 0$ for $T_n, n = 1, 2, \ldots$
- (d) Conclude that when $\frac{kL}{\pi c}$ is not a positive integer, the solution is

$$u(x,t) = e^{-kt} \sum_{1 \le n < kL/\pi c} \sin(n\pi x/L) \left(a_n \cosh \lambda_n t + b_n \sinh \lambda_n t\right) + e^{-kt} \sum_{kL/\pi c < n < \infty} \sin(n\pi x/L) \left(a_n \cos \lambda_n t + b_n \sin \lambda_n t\right)$$

where these sums run over integers only, $\lambda_n = \sqrt{\left|k^2 - (n\pi c/L)^2\right|}$, and where

$$a_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x/L) \, dx, \quad n = 1, 2, \dots$$

and the b_n are determined from the equation

$$-ka_n + \lambda_n b_n = \frac{2}{L} \int_0^L g(x) \sin\left(n\pi x/L\right) \, dx, \quad n = 1, 2, \dots$$

(e) Conclude that when $\frac{kL}{\pi c}$ is a positive integer, the solution is as in (d) with the one additional term

$$\sin\left(kx/c\right)\left(a_{kL/\pi c}e^{-kt}+b_{kL/\pi c}te^{-kt}\right)$$

with a_n and b_n as in (d), except that $b_{kL/\pi c}$ is determined from the equation

$$-ka_{kL/\pi c} + b_{kL/\pi c} = \frac{2}{L} \int_0^L g(x) \sin(kx/c) \, dx.$$

Question 6. [p 133, #4]

Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(1,t) &= 0, \quad t > 0 \\ u(x,0) &= 0, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= 1, \quad 0 < x < 1. \end{split}$$

Question 7. [p 133, #8]

Use D'Alembert's solution to solve the boundary value problem for the wave equation

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= 0, \quad 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) &= \sin \pi x, \quad 0 < x < 1. \end{aligned}$$

Question 8. [p 134, #16]

D'Alembert's solution for zero initial velocity. Show that the solution to the wave equation

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(L,t) &= 0, \quad t > 0 \\ u(x,0) &= f(x), \quad 0 < x < L, \\ \frac{\partial u}{\partial t}(x,0) &= 0, \quad 0 < x < L \end{split}$$

is given by

$$u(x,t) = \frac{1}{2} \sum_{n=1}^{\infty} b_n \left[\sin \left(n\pi (x-ct)/L \right) + \sin \left(n\pi (x+ct)/L \right) \right]$$

where $b_n = \frac{2}{L} \int_0^L f(x) \sin \left(n\pi x/L \right) \, dx, \ n = 1, 2, \dots$

Question 9. [p 144, #2]

Solve the boundary value problem for the one dimensional heat equation

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \ t > 0 \\ u(0,t) &= 0, \quad t > 0 \\ u(\pi,t) &= 0, \quad t > 0 \\ u(x,0) &= 30 \sin x, \quad 0 < x < \pi, \end{split}$$

and give a brief physical explanation of the problem.

Question 10. [p 144, #6]

Solve the boundary value problem for the one dimensional heat equation

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \ t > 0\\ u(0,t) &= 0, \quad t > 0\\ u(1,t) &= 0, \quad t > 0\\ u(x,0) &= e^{-x}, \quad 0 < x < 1, \end{aligned}$$

and give a brief physical explanation of the problem.