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Question 1. [p 77, #26]

Solve the initial value problem

y′′ + 9y = F (t)

y(0) = 0

y′(0) = 0

where F (t) is the 2π-periodic input function given by its Fourier series F (t) =

∞
∑

n=1

[

cosnt

n2
+ (−1)n sin nt

n

]

.

Question 2. [p 107, #8]

Verify that the function

u =
1

√

x2 + y2 + z2

is a solution to the three dimensional Laplace equation uxx + uyy + uzz = 0.

Question 3. [p 123, #2]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

∂2u

∂t2
=

1

π2

∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = sin πx cos πx, 0 < x < 1,

∂u

∂t
(x, 0) = 0, 0 < x < 1,

using the Method of Separation of Variables.

Question 4. [p 123, #4]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

∂2u

∂t2
=

∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = sin πx + 1

2
sin 3πx + 3 sin 7πx, 0 < x < 1,

∂u

∂t
(x, 0) = sin 2πx, 0 < x < 1,

using the Method of Separation of Variables.



Question 5. [p 124, #12]

Damped vibrations of a string. In the presence of resistance proportional to velocity, the one dimensional
wave equation becomes

∂2u

∂t2
+ 2k

∂u

∂t
= c2

∂2u

∂x2
0 < x < L, t > 0.

Solve this equation subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0 for all t > 0,

and the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x) for 0 < x < L

as follows:

(a) Assume a product solution of the form u(x, t) = X(x)T (t), and derive the following equations for X
and T,

X ′′ + µ2X = 0, X(0) = 0, X(L) = 0,

T ′′ + 2kT ′ + (µc)2T = 0,

where µ is the separation constant.

(b) Show that µ = µn =
nπ

L
and X = Xn = sin (nπx/Li) , n = 1, 2, . . . .

(c) Solve the equation T ′′
n + 2kT ′

n + (nπc/L)
2
Tn = 0 for Tn, n = 1, 2, . . . .

(d) Conclude that when kL
πc is not a positive integer, the solution is

u(x, t) = e−kt
∑

1≤n<kL/πc

sin (nπx/L) (an coshλnt + bn sinh λnt)

+ e−kt
∑

kL/πc<n<∞

sin (nπx/L) (an cosλnt + bn sin λnt)

where these sums run over integers only, λn =

√

∣

∣

∣
k2

− (nπc/L)
2

∣

∣

∣
, and where

an =
2

L

∫ L

0

f(x) sin (nπx/L) dx, n = 1, 2, . . . ,

and the bn are determined from the equation

−kan + λnbn =
2

L

∫ L

0

g(x) sin (nπx/L) dx, n = 1, 2, . . . .

(e) Conclude that when kL
πc is a positive integer, the solution is as in (d) with the one additional term

sin (kx/c) (akL/πce
−kt + bkL/πcte

−kt

with an and bn as in (d), except that bkL/πc is determined from the equation

−kakL/πc + bkL/πc =
2

L

∫ L

0

g(x) sin (kx/c) dx.



Question 6. [p 133, #4]

Use D’Alembert’s solution to solve the boundary value problem for the wave equation

∂2u

∂t2
=

∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1,

∂u

∂t
(x, 0) = 1, 0 < x < 1.

Question 7. [p 133, #8]

Use D’Alembert’s solution to solve the boundary value problem for the wave equation

∂2u

∂t2
=

∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1,

∂u

∂t
(x, 0) = sin πx, 0 < x < 1.

Question 8. [p 134, #16]

D’Alembert’s solution for zero initial velocity. Show that the solution to the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L,

∂u

∂t
(x, 0) = 0, 0 < x < L

is given by

u(x, t) =
1

2

∞
∑

n=1

bn [sin (nπ(x − ct)/L) + sin (nπ(x + ct)/L)]

where bn =
2

L

∫ L

0

f(x) sin (nπx/L) dx, n = 1, 2, . . . .

Question 9. [p 144, #2]

Solve the boundary value problem for the one dimensional heat equation

∂u

∂t
=

∂2u

∂x2
, 0 < x < π, t > 0

u(0, t) = 0, t > 0

u(π, t) = 0, t > 0

u(x, 0) = 30 sinx, 0 < x < π,

and give a brief physical explanation of the problem.



Question 10. [p 144, #6]

Solve the boundary value problem for the one dimensional heat equation

∂u

∂t
=

∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = e−x, 0 < x < 1,

and give a brief physical explanation of the problem.


