MATH 300 Fall 2004
Advanced Boundary Value Problems I
Assignment 1
Due: Friday September 24, 2004
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 5, \#8]
Derive the general solution of the equation

$$
a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=u, \quad a, b \neq 0
$$

by using an appropriate change of variables.
Question 2. [p 14, \#10]
Use D'Alembert's method and the superposition principle to solve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

with initial data

$$
u(x, 0)=e^{-x^{2}}, \quad \frac{\partial u}{\partial t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}}, \quad-\infty<x<\infty
$$

Question 3. [p 24, \#16]
Suppose that f is T-periodic and let F be an antiderivative of f, that is,

$$
F(x)=\int_{a}^{x} f(t) d t, \quad-\infty<x<\infty
$$

Show that F is T-periodic if and only if the integral of f over an interval of length T is 0 .
Question 4. [p 25, \#22]
Triangular Wave. Let $f(x)=x-2\left[\frac{x+1}{2}\right]$, and consider the function

$$
h(x)=|f(x)|=\left|x-2\left[\frac{x+1}{2}\right]\right| .
$$

(a) Show that h is 2-periodic.
(b) Plot the graph of h.
(c) Generalize (a) by finding a closed formula that describes the 2-periodic triangular wave

$$
g(x)=|x| \quad \text { if } \quad-p<x<p
$$

and

$$
g(x+2 p)=g(x) \quad \text { otherwise }
$$

Question 5. [p 35, \#6]
The function f is a 2π-periodic function and on the interval $-\pi \leq x \leq \pi$, we have

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } \quad 0<x<\pi / 2 \\
0 & \text { if } \quad \pi / 2<|x|<\pi \\
-1 & \text { if } \quad-\pi / 2<x<0
\end{aligned}\right.
$$

(a) Show that the Fourier series for f is given by $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(1-\cos \frac{n \pi}{2}\right) \sin n x$.
(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.

Question 6. [p 35, \#8]
The function f is 2π-periodic and on the interval $-\pi \leq x \leq \pi$, we have $f(x)=|\cos x|$.
(a) Show that the Fourier series for f is given by $\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1} \cos 2 n x$.
(b) For which values of x does the Fourier series for f converge? Sketch the graph of the Fourier series.

Question 7. [p 45, \#4]
The function f is $2 p$-periodic and is given on the interval $-p \leq x \leq p$ by $f(x)=x^{2}$. Show that the Fourier series of f is given by

$$
\frac{p^{2}}{3}-\frac{4 p^{2}}{\pi^{2}}\left[\cos (\pi x / p)-\frac{1}{2^{2}} \cos (2 \pi x / p)+\frac{1}{3^{2}} \cos (3 \pi x / p)-+\cdots\right]
$$

and find its values at the points of discontinuity of f.
Question 8. [p 45, \#28]
The function f is $2 p$-periodic and is given on the interval $-p<x<p$ by $f(x)=x$. Show that the Fourier series of f is given by

$$
\frac{2 p}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n \pi x / p)
$$

by differentiating the Fourier series in the previous problem term by term. Justify your work.
Question 9. [p 66, \#12]
Obtain the expansion

$$
e^{a x}=\frac{\sinh \pi a}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \cos n x-n \sin n x)
$$

valid for all real numbers $a \neq 0$, and all $-\pi<v<\pi$.

Question 10.

Establish the identity

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \quad(z \neq 1)
$$

and then use it to derive Lagrange's trigonometric identity:

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(2 n+1) \theta / 2]}{2 \sin (\theta / 2)} \quad(0<\theta<2 \pi)
$$

