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λ λ

1 r.h.s
_

Figure 4.3. There is exactly one value λ̄ such that equation (4.10) is satisfied.

Theorem 4.2.

If λ̄ < 0, then u(t, a)→ 0 as t→∞.

If λ̄ > 0, then u(t, a)→∞ as t→∞.

For each solution u(t, a) the function u(t, a)g−1
0 e−λt converges to w(a) as t → ∞

for each age a.

4.3 Reaction-Diffusion Equations

Another very important class of partial differential equations are reaction-diffusion
equations, for which the independent variables are time, t, and space, x. Reaction-
diffusion equations are used whenever the spatial spread of a population or chemical
species is of importance. Reaction-diffusion models have their limitations and there
are more advanced models (such as correlated random walks or transport equations),
but it is always a good idea to start with a reaction-diffusion model for spatial
spread. This has successfully been done in epidemic models, for pattern formation,
for predator-prey systems, and in signal transport, to name a few areas. A good
overview is given in Murray [112] and in Britton [24].
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126 Chapter 4. Partial Differential Equations

u(x,t)

J(x,t)

Ω

Γ

Figure 4.4. Sketch of a test volume Ω with boundary Γ, population density
u(x, t), and flux J(x, t) through the boundary.

4.3.1 Derivation of Reaction-Diffusion Equations

Assume a population with density u(x, t) is living and moving in a container. To
describe movement, we introduce another dependent quantity, the particle flux,
J(x, t) ∈ R

n. At each location x and at each time t, the flux J(x, t) is a vector
which points in the general direction of movement at that location. Its magnitude,
|J(x, t)|, is proportional to the amount of particles which flow in that direction per
unit time. Specifically, the flux J plays the role of the heat flux in heat transport,
or a concentration flux for a chemical reactor, and so on.

We consider a test volume Ω with boundary Γ and we balance the fluxes inward
and outward on Ω through Γ (see Figure 4.4). In words,

Change of u in Ω = flux through Γ + change due to birth, death, interactions.

Written in mathematical relations, this means

d

dt

∫

Ω

u(x, t)dV = −
∫

Γ

J(x, t)dS +

∫

Ω

f(u(x, t))dV,

where dV denotes integration in the whole space R
n and dS denotes surface inte-

gration in dimension R
n−1.

We use the Divergence Theorem
∫

Γ

J(x, t)dS =

∫

Ω

divJ(x, t)dV,
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4.3. Reaction-Diffusion Equations 127

x

u(x)

J(x)

Figure 4.5. Schematic of Fick’s second law. A positive gradient of u gives
rise to a negative flux J .

and we get
∫

Ω

(
d

dt
u− f(u) + divJ

)

dV = 0.

The above relation is satisfied in each test volume Ω. Then (if the measure dV is
not degenerate) it follows that

d

dt
u− f(u) + divJ = 0. (4.11)

Next, we need an expression of the flux in terms of the population distribution. As
for chemical reactions, we use Fick’s second law1

J = −D∇u. (4.12)

We assume that the flux J is proportional to the negative gradient of the particle
distribution. In Figure 4.5, we show a positive gradient of u ( ∂

∂xu(x, t) > 0). The
flux points to the left, leading to equilibrate high and low levels of u. If we combine
the balance law (4.11) with Fick’s law (4.12), we get a reaction-diffusion equation,

d

dt
u = D∆u+ f(u), (4.13)

where the Laplacian ∆u is defined as

∆u(x, t) =
∂2

∂x2
1

u(x, t) + · · ·+ ∂2

∂x2
n

u(x, t), x = (x1, . . . , xn) ∈ R
n.

If f = 0, then equation (4.13) is simply the diffusion equation or heat equation.

1

In the interpretation of heat transport, this law is known as Fourier’s law.
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128 Chapter 4. Partial Differential Equations

4.3.2 The Fundamental Solution

The fundamental solution is a particular solution of the diffusion equation ((4.13)
with f = 0), that can be used to find other solutions by convolution (see, for exam-
ple, Britton [24]). Moreover, this solution shows many of the common properties of
solutions of reaction-diffusion equations in general.

The fundamental solution appears for a particle which starts at the origin 0. In
terms of random walks on a grid (see Chapter 5), it is straightforward to start with
a particle at 0. In the continuous case, however, we use a δ-distribution δ0(x). The
δ-distribution is not a function in the classical sense. It is defined by its action
on smooth functions. If f(x) is a smooth function, then δ0(x) is the one and only
object which satisfies

∫

R

δ0(x)f(x)dx = f(0)

and ∫

R

δ0(x)dx = 1.

To get an idea about the shape of δ0(x) keep in mind that

δ0(x) =

{
+∞ for x = 0,
0 for x 6= 0,

(4.14)

which is, however, not a valid definition of δ0(x).

The δ-distribution is the prototype of a class of functions which are called distri-
butions (we refer to Friedlander [53] for further details on distributions). For now,
it is sufficient to understand the properties as described above, and consider the
initial-value problem for a particle which diffuses in one dimension and starts with
certainty at 0:

gt = Dgxx, g(x, 0) = δ0(x). (4.15)

The fundamental solution (in one dimension) (see Exercise 4.5.2) is

g(x, t) =
1

2
√
πDt

e−
x2

4Dt . (4.16)

In Figure 4.6, we show this solution for time steps t = 0, t = t1 > 0, t = t2 > t1,
and D = 1. Although the initial condition is not continuous, the solution (4.16) is
continuous for all t > 0. In fact, it is infinitely often continuously differentiable, a
property which is known as the regularizing property of the diffusion equation.

At t = 0, we have δ0(x) = 0 for all x 6= 0. However, as soon as t > 0, we have
g(x, t) > 0 for all x ∈ R. There is a minimal chance to find the particle very far
from its starting point. The diffusion equation allows for infinitely fast propagation.
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0 x

t = 0

t
1
 > 0

t
2
 > t

1

Figure 4.6. Solutions of the diffusion equation (4.15) for three time values,
t = 0, t = t1 > 0, and t = t2 > t1.

If we study the diffusion equation with a general initial condition,

ut = Duxx, u(x, 0) = f(x), (4.17)

then the solution can be found by convolution with g:

u(x, t) = (f ∗ g(·, t))(x),

where the convolution integral is given by

(f ∗ g(·, t))(x) =

∫ ∞

−∞

f(y) g(x− y, t) dy

=
1

2
√
πDt

∫ ∞

−∞

f(y)e−
(x−y)2

4Dt dy.

(4.18)

4.3.3 Critical Patch Size

Reaction-diffusion equations are used to estimate the size of a habitat that can
support a population. In general, it is not possible to establish a stable surviving
population on an island that is too small. For pests, like the spruce budworm (see
Murray [110]), information about the critical patch size can be used to determine
how to split a woodland into small enough patches so as to prevent the budworms
from settling in.
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130 Chapter 4. Partial Differential Equations

0 l

Figure 4.7. A typical solution of (4.19) with homogeneous Dirichlet bound-
ary conditions (island-conditions).

0 l

Figure 4.8. A typical solution of (4.19) with homogeneous Neumann
boundary conditions (box-conditions).

To illustrate the use of reaction-diffusion equations in this context, we use Fisher’s
equation, which shows all necessary features. Fisher [49] proposed the following
model for the spread of an advantageous gene in a population:

ut = Duxx + µu(1− u), (4.19)

where u(x, t) is the density of the gene in the population at time t and location
x. The term µu(1 − u) is already familiar to us: it is Verhulst’s law of growth
with saturation. Fisher’s equation applies also for population growth of randomly
moving individuals. We will study this equation on a one-dimensional patch of size
l, I = [0, l].

A partial differential equation on a bounded interval needs boundary conditions.
Here we are guided by the application, and we discuss the most common possibilities.

The case of an island as a patch has already been mentioned. Appropriate island
boundary conditions are

u(0, t) = 0, u(l, t) = 0. (4.20)

These are also called homogeneous Dirichlet boundary conditions (see Figure 4.7).
We can also study a valley or a box, or a patch with sealing walls. Then no individual
can leave the patch. Appropriate box boundary conditions are

ux(0, t) = 0, ux(l, t) = 0, (4.21)

which are sometimes called homogeneous Neumann boundary conditions (see Fig-
ure 4.8). Obviously, combinations of island and box boundary conditions can occur
if, for example, the patch is bounded by a wall on the one side and by water on the
other. We could also include some semi-permeable walls such that only a fraction
of the population can leave the domain, etc. We restrict our attention to the first
two cases given above. Note that we need one set of boundary conditions, either
(4.20) or (4.21), but not both at the same time.
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4.3. Reaction-Diffusion Equations 131

The question we are investigating is:

How large must an island or box be to support a population?

It has been shown in research articles (see for example Britton [24]) that it is
equivalent to ask when the trivial solution u(x, t) = 0 is unstable. If u(x, t) ≡ 0
would be stable, then each solution (near 0) would converge to 0, and the population
would die out. Hence, u(x, t) ≡ 0 has to be unstable to allow for a surviving
population. We are not introducing the notion of stable or unstable for partial
differential equations here, but we can use them in the same way as for ordinary
differential equations (see Chapter 3).

For Fisher’s equation (4.19), the following questions are equivalent (Grindrod [66]).

(i) How large must an island or box be to support a population?

(ii) What is the critical domain length l∗ such that u ≡ 0 is stable for l < l∗ and
unstable for l > l∗?

(iii) What is the critical domain length l∗ such that a non-tivial stationary solution
(steady state) exists for l > l∗?

We investigate (iii):

A steady state satisfies ut = 0, hence

uxx = − µ
D
u(1− u). (4.22)

We are looking for solutions u(x) 6= 0 which satisfy the correct boundary conditions,
and we will use phase plane analysis from Chapter 3 to study (4.22). With a new
variable, v := ux, we obtain the system

ux = v,

vx = − µ
Du(1− u),

(4.23)

with Dirichlet boundary conditions (4.20)

u(0) = 0, u(l) = 0,

or with Neumann boundary conditions (4.21)

v(0) = 0, v(l) = 0.

The key to studying equation (4.23) is to understand x as a “time” variable and to
consider

u′ = v
v′ = − µ

Du(1− u)
(4.24)
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132 Chapter 4. Partial Differential Equations

as a 2× 2 system of ordinary differential equations. The equilibria of (4.24) are

P1 = (0, 0), P2 = (1, 0).

The Jacobian of (4.24) is

Df(u, v) =





0 1

2 µ
Du−

µ
D 0



 .

The linearization of (4.24) at P1 is

Df(0, 0) =

(
0 1

− µ
D 0

)

,

which has purely imaginary eigenvalues λ1/2 = ±i
√

µ
D . Hence, (0, 0) is a center.

At P2, we find

Df(1, 0) =

(
0 1
µ
D 0

)

,

with eigenvalues λ1/2 = ± µ
D . Hence, (1, 0) is a saddle.

Since (1, 0) is a saddle for the linearization, it is also a saddle for the full, non-
linear system (4.24). This follows from the Hartman-Grobman Theorem (see The-
orem 3.6). Unfortunately, the Hartman-Grobman Theorem does not apply to the
center case. We cannot decide yet, wether (0, 0) is a stable spiral, an unstable spiral,
or indeed a center for the nonlinear system (4.24).

We can obtain the missing information from a Hamiltonian function, which is a
function H(u, v) that satisfies

∂H

∂v
= u′ and

∂H

∂u
= −v′. (4.25)

For solutions (u(x), v(x)) of (4.24), we get via the chain rule

d

dx
H(u(x), v(x)) =

∂H

∂u
· u′ + ∂H

∂v
· v′ = −v′u′ + u′v′ = 0. (4.26)

For (4.24) we can write down the Hamilton function explicitly

H(u, v) =
1

2
v2 +

µ

D

u2

2
− µ

D

u3

3
.

Remember that we understand x as time, hence from (4.26), it follows that the
value of H does not change along solution curves (u(x), v(x)).

In Figure 4.9, we show H as a function of (u, v). Since H does not change along
solution curves, the solution curves must follow the level lines of H . Since we have
a Hamiltonian function, it follows that each bounded solution is either
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1

2

3

4

H(u,v)

–1.4 –1 –0.6 0 0.20.40.60.8 1 1.21.41.61.8 2
v

–2

2

u

Figure 4.9. Hamiltonian function H(u, v) and level curves.

1. an equilibrium point,

2. a connection of equilibrium points, or

3. a closed orbit.

This implies that the steady state (0, 0) is a center. We now have enough information
to sketch the phase portrait of (4.24) in Figure 4.10. Although the phase portrait
includes regions of u < 0, we consider only solutions which satisfy u ≥ 0. Since
u(x) is a population density, it cannot be negative. We refer to the region u < 0 as
not biologically relevant.

To find relevant solutions, we have to consider the boundary conditions. In the
notion of the “time” x, a Dirichlet solution is a solution that starts at 0 (u(0) = 0),
and it connects to u(l) = 0, where u ≥ 0 all the time. Curve a) in Figure 4.10 shows
one such solution. Solutions to Neumann boundary conditions connect v(0) = 0
with v(l) = 0. A typical solution is indicated by curve b) in Figure 4.10. Of
course, this solution is not biologically relevant. The only relevant solutions for the
Neumann case are u ≡ 0 and u ≡ 1.

Hence for a box, we can already answer our original question. A box of any size
supports a population up to the carrying capacity (which is 1 in this case). The
corresponding solution is u(x, t) ≡ 1.

What is the minimal length for the Dirichlet problem? Let’s take a closer look at
the Dirichlet solutions. Each solution has a unique u-axis intersection ū (see Figure
4.11). As ū→ 1, the solution approaches the saddle point. Very close to the saddle
point, it takes longer and longer to move forward. Hence, l →∞ for ū→ 1.
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134 Chapter 4. Partial Differential Equations

Figure 4.10. Phase portrait of system (4.24). The curve a) shows a
solution which satisfies homogeneous Dirichlet boundary conditions, whereas b) is
a solution with homogeneous Neumann boundary conditions. The grey area is not
biologically relevant because u < 0.

(a)

u

(u(l),v(l))

(u(0),v(0))

1

(u(l/2),v(l/2) = (u,0)

v

(b)

u(x)

0 l/2 l x

u

Figure 4.11. (a) For each possible Dirichlet solution there is a unique
u-axis intersection ū. (b) The same Dirichlet solution shown as a function of x

One could guess that l → 0 for ū → 0, but this is false. For ū → 0, we enter the
range close to (0, 0), where the linearization describes the behaviour of the solutions.
Remember that (0, 0) is a center with eigenvalues λ1/2 = ±i

√
µ
D . Hence the general

solution near (0, 0) is given as (u(x), v(x))T =
(
c1 cos

(√ µ
Dx
)
, c2 sin

(√ µ
Dx
))T

.
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x

u(t,x)

c

Figure 4.12. A typical invasion travelling wave.

A Dirichlet solution corresponds to a half circle starting at (u(0), v(0)) = (0, c2)

and ending at (u(l), v(l)) = (0,−c2), which gives
√

µ
D l = π, hence l = π

√
D
µ . In

the limit ū→ 0, we get a critical patch size of l∗ = π
√

D
µ .

If l > l∗, we get a population distribution of the form shown in Figure 4.7 and Fig-
ure 4.11 (b). If l < l∗,the patch cannot support the population. Note that the case
l = l∗ cannot be decided by linear analysis. If l = l∗, one of the eigenvalues of the
homogeneous solution equals zero, hence (0, 0) is not hyperbolic and the Hartman-
Grobman theorem cannot be applied. For l = l∗, the full nonlinear problem needs
to be solved.

Now we are able to solve the problem for the island boundary conditions as well:

An island can support a population if its length l satisfies l > l∗ = π
√

D
µ . If l < l∗

each initial population will die out.

4.3.4 Travelling Waves

Another important problem in spatial ecology is if and how species can invade new
habitats. Our method for studying this is to look for travelling wave solutions of a
reaction-diffusion equation. To illustrate this, we again study Fisher’s equation,

ut = Duxx + µu(1− u), (4.27)

but now on the whole line R. We seek solutions which describe the invasion of the
population into a new habitat. In particular, we seek solutions u(x, t) that have the
form shown in Figure 4.12, and then move with constant speed c. A solution of this
type can be expressed as

u(x, t) = φ(x− ct).

For c > 0, the function φ(x− ct) is the function φ(x) shifted to the right by ct, see
Figure 4.13. The parameter c is the wave speed, the new variable, z := x − ct, is
called the wave variable, and the function φ(z) is called the wave profile.
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0 2 31 x

φ(x)

0 2 31 x

φ(x-2)

Figure 4.13. The profile φ(x) from the top figure is shifted by 2 to the
right (bottom).

We make the travelling wave ansatz

u(x, t) = φ(x − ct), φ(−∞) = 1, φ(+∞) = 0, (4.28)

where instead of boundary conditions, we now have conditions at ±∞. For x →
−∞, the population has already grown to its carrying capacity (1 in this case), and
for x→ +∞, the population has not arrived yet.

From (4.28), we obtain

∂

∂t
u(x, t) = −cφ′, ∂2

∂x2
u(x, t) = φ′′,

and (4.27) reduces to the following ordinary differential equation for φ(z)

−cφ′ = Dφ′′ + µφ(1− φ). (4.29)

As in the previous section, we introduce a new variable, ψ := φ′, and write (4.29)
as a 2× 2 system

φ′ = ψ,

ψ′ = − c
Dψ −

µ
Dφ(1− φ).

(4.30)

The equilibria of (4.30) are P1 = (0, 0) and P2 = (1, 0). Using the linearization, we
find that the point P1 = (0, 0) is stable for c > 0. It is a stable spiral for c < 2

√
Dµ,

and a stable node for c > 2
√
Dµ. The point P2 = (1, 0) is always a saddle.
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1
for z 8−

for z
0

8

φ(z)

Figure 4.14. The travelling wave as a function of the wave variable z.

1 φ

ψ

Figure 4.15. Heteroclinic connection from the saddle at (1, 0) to the stable
spiral at (0, 0). Here µ = D = 1 and c < 2. There is no non-negative travelling
wave.

1 φ

ψ

Figure 4.16. Heteroclinic connection from the saddle at (1, 0) to the stable
node at (0, 0). Here µ = D = 1, c > 2. There exists a non-negative travelling wave.
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z

φ(z)

φ(z) < 0:  not biologically relevant

Figure 4.17. Oscillations of the leading edge of the wave from Figure 4.15.

As for the critical patch size, we interpret x as a time variable. Recall that the
boundary conditions for the wave profile are φ(−∞) = 1 and φ(+∞) = 0. Moreover,
from the form of φ as shown in Figure 4.14, it is clear that ψ(−∞) = ψ(+∞) = 0.
Hence, in the phase portrait of system (4.30), we have to find a connection from the
saddle (1, 0) to the stable point (0, 0). We show these connections for c < 2

√
Dµ in

Figure 4.15, and for c > 2
√
Dµ in Figure 4.16 b).

The function φ is the profile of the population density; hence it has to be nonnega-
tive. Thus solutions for c < 2

√
Dµ are not biologically relevant. They correspond to

an oscillating front (see Figure 4.17). We obtain that the minimal speed c∗ for which
a wavefront solution exists, is given by c∗ = 2

√
Dµ (here we argued graphically; a

proof can be found in Källén et al. [88]).

General Fisher equation

The above result on minimal wave speed of travelling fronts can be generalized to
general Fisher equations

ut = Duxx + f(u),

where f(u) has a shape similar to µu
(
1− u

K

)
. The exact conditions on f are: there

is a K > 0 such that

f(0) = 0, f(K) = 0,
f(u) > 0, for all 0 < u < K,
f ′(0) > 0, f ′(K) < 0.

Moreover, if we assume that f(u) satisfies the subtangential condition,

f ′(0)u > f(u), for all 0 < u <∞,

then the minimal wave speed is

c∗ = 2
√

Df ′(0).
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The Linear Conjecture

As we saw in the previous sections, the minimal wave speed c∗ is exactly that
value where (0, 0) changes from spiral into node. If we consider the travelling wave
solution close to (0, 0), then the behaviour is described by the linearization around
(0, 0). The Jacobian of (4.30) at (0, 0) is

Df(0, 0) =

(
0 1

− µ
D − c

D

)

,

which has trace −c/D and determinant µ/D. Hence, (0, 0) is a node if and only if

c2 − 4Dµ > 0,

or c > 2
√
Dµ. The eigenvalues then are given by

λ1/2 = − c

2D
± 1

2

√

c2

D2
− 4

µ

D
,

and for c∗ = 2
√
Dµ, we have an eigenvalue of multiplicity 2:

λ1 = λ2 = − c∗

2D
.

The solution near (0, 0) behaves like e−
c∗

2D
x for x → ∞. Hence, − c

2D is the decay
rate at the wave front.

Indeed, in many cases, it is enough to measure the decay rate of the profile for large
x to get a good approximation for the minimal wave speed c∗. This is known as
linear conjecture.

4.4 Further Reading

There are a number of introductory textbooks on partial differential equations
(PDE), such as the books by Haberman [68], and Keane [89]. The contents of
these and similar books has been developed in the context of applications in engi-
neering and physics. Most of the material deals with separation and series solutions
(see also Exercise 4.5.6). Although these methods are very important, they do not
play a major role in applications to biological systems. For PDE’s in mathematical
biology, a more modern approach is used, which is based on dynamical system the-
ory and nonlinear dynamics. For example, the material in Section 4.3.3 cannot be
found in any of the classical introductory textbooks, although it can be understood
easily with a basic background in ordinary differential equations.
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The text of Webb [150] is an introductory text and also a standard reference for age
structured population models. The material from Section 4.2 is based on Webb. For
reaction-diffusion equations (including the Fisher equation), a standard reference is
Murray [112]. A very good introduction to critical domain size and traveling waves
can be found in Britton [24]. The traveling wave probelm also is discussed in detail
in Grindrod [66].

The material on critical domain size and on travelling waves is also covered in
the introductory biomath textbooks which are mentioned in Appendix A ”Further
Reading”; Britton [25], Jones and Sleeman [86], and Taubes [145].

Pattern formation, Turing instabilities, and activator-inhibitor systems have not
been discussed in the present course. We refer to the aforementioned texts of
Murray, Britton, or Grindrod. Okubo and Levine [119] give a detailed overview
of the manifold applications of reaction-diffusion and reaction-advection-diffusion
equations to biological problems (advection refers to directed movement).

Two more recent books on reaction-diffusion and related models applied to popu-
lation dynamics are by Thieme [146] and Cantrell and Cosner [33]. Both texts give
a comprehensive treatment of the underlying theory of dynamical systems, bifurca-
tions and functional analysis. Thieme’s book deals with stage-structured population
models, and Cantrell and Cosner study questions about permanence and persistence
in spatially nonhomogeneous ecological systems.

To obtain a good basic knowledge of the theory of PDE and their mathematical
properties we recommend the following textbooks: Evans [47], McOwen [106], and
Renardy and Rogers [127]. These texts are pure PDE courses and they do not
feature biological applications. They are appropriate for an beginning graduate
student, and they are not too easy. To properly derive a solution theory for PDE’s
one has to introduce appropriate function spaces and one needs some functional
analytical tools.


