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Figure 3.6. (a) Construction of the vector field for (3.14); (b) The vector
field for Example 3.4.2 and one typical trajectory; (c) the nullclines with vector field
at the nullclines.

3.4 Qualitative Analysis of 2× 2 Systems

In this section, we develop a qualitative theory for systems of two differential equa-
tions, much in the spirit of Section 3.2 where we introduced phase-line and vector-
field analyses. Here, we will use phase-plane analysis, vector-field analysis and the
phase portrait. With these methods, the qualitative behaviour of a system of equa-
tions can be understood without solving the equations explicitly. Explicit solution
methods can be found in textbooks on ODEs (such as Boyce and DiPrima [21]).

Consider a system of two differential equations,

x′1 = f1(x1, x2),
x′2 = f2(x1, x2).

(3.14)

At each x = (x1, x2) ∈ R
2, the vector field f(x) = (f1(x), f2(x)) represents a vector,

as shown in Figure 3.6. A solution x(t) = (x1(t), x2(t)) represents a parametric
curve in the (x1, x2) plane, called a trajectory or an orbit, whose tangent vector
x′(t) = (x′1(t), x

′
2(t)) is specified by the vector field f(x(t)) = (f1(x1(t), x2(t)),

f2(x1(t), x2(t))). We can obtain a good impression of the overall dynamics if we
plot many vectors in the (x1, x2) plane. For each chosen point (x1, x2), we calculate
(f1(x1, x2), f2(x1, x2)) and sketch this vector. We repeat this procedure at many
different points until the whole plane is filled with vectors. In Figure 3.6 (a), we
show how to calculate one such vector.

Since solution curves are tangential to the vector field, f , we often can follow tra-
jectories just by following the arrows. In Figure 3.6 (b), a typical solution curve is
shown (in this case, we have a stable spiral converging at the origin). The vector
field can be used to sketch more than one typical solutions, starting at different ini-
tial conditions. The sketch of the (x1, x2) plane with a number of typical solutions
is called a phase portrait. Of course, “typical” is a rather vague notion and you
need some experience to be able to decide which solutions represent the qualitative
behaviour. We will demonstrate and practice this in what follows.
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84 Chapter 3. Ordinary Differential Equations

Many computer packages provide a routine to draw the vector field and the phase
portrait of an ODE system. In Chapter 8, we will learn how to do this with Maple.

Another helpful tool for obtaining insight into the phase portrait are nullclines
(or 0-isoclines). The x1-nullcline, n1, is the set of points (x1, x2) such that x′1 =
f(x1, x2) = 0, that is,

n1 := {(x1, x2)|f1(x1, x2) = 0}.

Similarly, the x2-nullcline, n2, is

n2 := {(x1, x2)|f2(x1, x2) = 0}.

On the x1-nullcline, n1, all vectors of the vector field are vertical (since x′1 = 0).
Similarly, on n2, all vectors are horizontal (since x′2 = 0). At intersections of n1

and n2, we have x′1 = 0 and x′2 = 0. Hence a steady state or equilibrium point
exists at any intersection of n1 and n2. In Figure 3.6 (c), we show the nullclines
corresponding to the vector field of Figure 3.6 (b) and the corresponding steady
state at the origin.

In general, equilibria, or steady states of (3.14) are solutions of

f1(x1, x2) = 0, f2(x1, x2) = 0,

which we denote by (x̄1, x̄2). The steady states play an important role in the under-
standing of the model dynamics. In many cases, if the behaviour near each steady
state is known, then the global behaviour of solutions can be understood quite well.
It turns out that we can classify all possible types of behaviour which can occur near
a steady state. We will do so in the following two sections. In Section 3.4.1, we first
treat specific linear systems. After that, we generalize to arbitrary linear systems.
In Section 3.4.2, we consider nonlinear systems. Phase-plane analysis will then be
applied to the population interaction model (in Section 3.4.3) and the epidemic
model (in Section 3.4.4).

3.4.1 Phase-Plane Analysis: Linear Systems

Step 1: Specific Linear Systems

1a) Real eigenvalues

Consider the simplest linear system,

x′1 = λ1x1,
x′2 = λ2x2,

(3.15)
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λ1, λ2 > 0 λ1 > 0,  λ2 < 0 λ1, λ2 < 0

source saddle sink

Figure 3.7. Three qualitatively different phase portraits for system (3.15)
depending on the sign pattern of λ1 and λ2. (a) λ1, λ2 > 0; (b) λ1 > 0, λ2 < 0; (c)
λ1, λ2 < 0.

whose unique steady state is the origin, (x̄1, x̄2) = (0, 0). In matrix form, we can
write

d

dt

(
x1

x2

)

=

(
λ1 0
0 λ2

)(
x1

x2

)

.

Note that λ1 and λ2 are the eigenvalues of the matrix

A =

(
λ1 0
0 λ2

)

.

Solutions to (3.15) are

x1(t) = x1(0)eλ1t, x2(t) = x2(0)eλ2t.

Plotting the parametric curves (x1(t), x2(t)) for different initial values (x1(0), x2(0)),
we arrive at three distinct phase portraits, depending on the signs of λ1 and λ2, as
shown in Figure 3.7.

Case (a): If both eigenvalues λ1 and λ2 are positive, then all solutions diverge from
the steady state (0, 0). In Figure 3.7 (a), several trajectories are shown for positive,
negative, or mixed initial conditions. In this case, the steady state (0, 0) is called a
source or an unstable node.

Case (b): If the eigenvalues have opposite signs, λ1 > 0 and λ2 < 0, say, then x1(t)
is exponentially increasing, while x2(t) is decreasing. All solutions approach the
x1-axis, as shown in Figure 3.7 (b). In this case, the steady state (0, 0) is called a
saddle.

Case (c): If both eigenvalues are negative, then all solutions converge to the steady
state (0, 0), as shown in Figure 3.7 (c). The steady state is called a sink or stable
node.
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1b) Complex eigenvalues

Consider the linear system

d

dt

(
x1

x2

)

=

(
α β
−β α

)(
x1

x2

)

. (3.16)

For β 6= 0, the system has the origin, (0, 0), as its only steady state. The coefficient

matrix A =

(
α β
−β α

)

has two complex conjugate eigenvalues

λ1 = α+ βi and λ2 = α− βi.

We can verify (see Exercise 3.9.8) that (3.16) has two special solutions, namely

x(1)(t) = eαt

(
cosβt

− sinβt

)

, x(2)(t) = eαt

(
sinβt

cosβt

)

.

The superposition principle of linear systems implies that all solutions to (3.16) are
of the form

x(t) = c1x
(1)(t) + c2x

(2)(t) = aeαt

(
cos(βt+ φ)

− sin(βt+ φ)

)

or

x1(t) = aeαt cos(βt+ φ),
x2(t) = −aeαt sin(βt+ φ),

(3.17)

where a and φ are determined by the initial conditions, (x1(0), x2(0)).

Using (3.17), we can classify three distinct cases, shown in Figure 3.8.

Case (a): α = 0, so that both eigenvalues are purely imaginary. All solutions are
periodic, and all trajectories are closed orbits surrounding the steady state (0, 0),
as shown in Figure 3.8 (a). The steady state is called a center.

Case (b): α > 0, so that both eigenvalues have positive real parts. The exponential
function eαt grows for t > 0. All trajectories spiral away from the steady state
(0, 0), as shown in Figure 3.8 (b). The steady state is called an unstable spiral or a
spiral source.

Case (c): α < 0, so that both eigenvalues have negative real parts. The exponential
function eαt decays for t > 0. All trajectories spiral towards the steady state (0, 0),
as shown in Figure 3.8 (c). The steady state is called a stable spiral or a spiral sink.

Corresponding solutions x1(t) for each case are shown in Figure 3.8 as well.
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Figure 3.8. Three qualitatively different cases for system (3.16), depending
on the value of the parameter α. (a) α = 0; (b) α > 0; (c) α < 0. Graphs in the left
column show phase portraits. Graphs in the right column show a typical solution
for x1(t).

Step 2: General Linear Systems

We now consider a general linear system,

d

dt

(
x1

x2

)

=

(
a b
c d

)(
x1

x2

)

, A =

(
a b
c d

)

. (3.18)

If we make the transformation
(
y1
y2

)

= P−1

(
x1

x2

)

,
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where P is a 2× 2 invertible matrix, then y = (y1, y2) satisfies the system

d

dt

(
y1
y2

)

= B

(
y1
y2

)

, (3.19)

where B = P−1AP . Systems (3.18) and (3.19) have the same phase portraits.

It is known from linear algebra (see [97]) that if A has two distinct real eigenvalues
λ1 and λ2 such that λ1 6= λ2, then we can choose P such that

B =

(
λ1 0
0 λ2

)

.

If A has two complex conjugate eigenvalues λ1 = λ̄2 = α+ βi, then we can choose
P such that

B =

(
α β
−β α

)

.

Thus, we conclude that the phase portraits of (3.18) will be the same as those of
systems (3.15) or (3.16), studied earlier. Before presenting a theorem about the
stability of the origin, we work out the details of computing the matrix B for two
specific examples.

Example 3.4.1: Consider the linear system

ẋ = 2x− 2y,
ẏ = 2x− 3y.

(3.20)

In vector matrix notation, we have

d

dt

(
x
y

)

=

(
2 −2
2 −3

)(
x
y

)

, A =

(
2 −2
2 −3

)(
x
y

)

.

It is straightforward to verify that the eigenvalues and corresponding eigenvectors
of A are λ1 = 1, ζ1 =

(
2
1

)
and λ2 = −2, ζ2 =

(
1
2

)
.

The eigenvalues of A are real and distinct. If we use the eigenvalues ζ1 and ζ2 as
columns of a matrix P , we obtain the transformation

P =

(
2 1
1 2

)

, P−1 =
1

3

(
2 −1
−1 2

)

,

then

B = P−1AP =

(
1 0
0 −2

)

.

From the solution of the related linear system

d

dt

(
u
v

)

=

(
1 0
0 −2

)(
u
v

)

, (3.21)
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Figure 3.9. The phase portraits of (3.21) (a) and (3.20) (b).

we can recover the solution of (3.20) via

(
x
y

)

= P

(
u
v

)

.

The phase portrait of (3.21) is shown in Figure 3.9 (a), and the corresponding
phase portrait of (3.20) is shown in Figure 3.9 (b). The transformation P maps the
unstable direction

(
1
0

)
of (3.21) onto the unstable direction

(
2
1

)
of (3.20). Similarly,

the stable direction
(
0
1

)
of (3.21) is mapped onto the stable direction

(
1
2

)
of (3.20).

Note that the phase portrait shown in Figure 3.9 (b) is a compressed and rotated
version of the phase portrait shown in Figure 3.9 (a).

Example 3.4.2: We consider the system

d

dt

(
x
y

)

=

(
−1 −2

2 −1

)(
x
y

)

.

The eigenvalues of the corresponding matrix are λ1 = −1+2i and λ2 = λ̄1 = −1−2i.
The corresponding (complex) eigenvectors are ζ1 =

(
i
1

)
and ζ2 =

(
−i
1

)
. The solution

can be written in the general form

(
x
y

)

(t) = e−t

(

c1

(
− sin(2t)

cos(2t)

)

+ c2

(
cos(2t)
sin(2t)

))

(for a reminder on the details, see Boyce and DiPrima [21] or Hirsch and Smale
[78]), which describes a rotation that converges to 0 (because of e−t). The steady
state (0, 0) is a stable spiral. The vector field and one solution curve were shown in
Figure 3.6 (b).

In all the cases discussed above, solutions only converge to the steady state at (0, 0)
when both eigenvalues λ1, λ2 < 0 (the origin is a stable node), or when the real
part of the eigenvalues satisfies α < 0 (the origin is a stable spiral). In these two
cases we call the steady state at (0, 0) asymptotically stable.
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We have seen that we can classify the equilibria of a linear system according to the
eigenvalues of the corresponding coefficient matrix,

A =

(
a b
c d

)

.

Sometimes it is more convenient to use two other characteristic values of A, namely
the trace, tr A = a+ d, and the determinant, det A = ad− bc. It is known that the
trace is always the sum of the eigenvalues, tr A = λ1 + λ2, and the determinant is
the product, det A = λ1λ2. Moreover, one can use the trace and determinant to
calculate the eigenvalues. In Exercise 3.9.9, the reader is asked to show that

λ1,2 =
tr A

2
± 1

2

√

(tr A)2 − 4 det A. (3.22)

Note that the formula in (3.22) holds only for 2 × 2 matrices. For higher-order
matrices, there is no formula of this form.

From (3.22), we see that it is necessary to have tr A < 0 in order to have a steady
state that is asymptotically stable (otherwise at least one eigenvalue would have a
positive real part). If tr A < 0, then the discriminant, (tr A)2 − 4 det A, is either
negative or smaller than (tr A)2. Hence the real part of the eigenvalues is always
negative, and (0, 0) is asymptotically stable. We can summarize our conclusions in
the following theorem.

Theorem 3.3. For a linear system, (3.18), the following are equivalent:

• the equilibrium (0, 0) is asymptotically stable;

• all eigenvalues of A have negative real parts;

• detA = ad− bc > 0 and tr A = a+ d < 0.

We can treat all different combinations for the sign of trace and determinant, and
obtain a complete picture of possible behaviour near an equilibrium point. Fig-
ure 3.10 shows the “zoo” of all possible types of behaviour for steady states of
two-dimensional systems.

We can summarize the possible types of behaviour as follows:

1. Case detA < 0. Then (trA)2 − 4 detA > (trA)2. From formula (3.22), it
follows that there is one positive and one negative eigenvalue, λ1 > 0 and
λ2 < 0, say. Hence, (0,0) is a saddle point. Moreover, solutions grow as
eλ1t in the direction of the eigenvector ϕ1 corresponding to λ1, and solutions
decay as eλ2t in the direction of the eigenvector ϕ2 corresponding to λ2. In
Figure 3.10, the stable and unstable eigenvectors are shown.
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Figure 3.10. The zoo for the general linear system, (3.18). This is a
modified version of Figure 5.14 in Edelstein-Keshet [44] used with permission.

2. Case detA > 0, trA < 0. If (trA)2 < 4 detA (above the parabola in
Figure 3.10), then λ1, λ2 are complex conjugate eigenvalues with real part
trA
2 < 0, and (0, 0) is a stable spiral. If (trA)2 > 4 detA (below the parabola),

then λ1, λ2 are real, but they have the same sign, and (0, 0) is a stable node.

3. Case detA > 0, trA > 0. Depending on the sign of (trA)2 − 4 detA, we have
either an unstable spiral or an unstable node.

4. Case detA > 0, trA = 0. In this case we have a center.

5. The remaining cases (detA = 0 and (trA)2−4 detA = 0) will not be discussed.
We refer to Hirsch and Smale [78] for these cases.

3.4.2 Nonlinear Systems and Linearization

Consider a nonlinear system in R
2,

x′1 = f1(x1, x2),
x′2 = f2(x1, x2),

(3.23)

where f1 and f2 are continuously differentiable functions.
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In general, each pair (x̄1, x̄2) satisfying f1(x̄1, x̄2) = f2(x̄1, x̄2) = 0 is called an
equilibrium or a steady state for (3.23). We would like to understand the behaviour
of the solutions near equilibria.

For linear systems, we observed that solutions converge to (0, 0), they diverge away
from (0, 0), or, in the center case, they stay close by. Before we can generalize
these observations to nonlinear systems, we need some definitions from dynamical
systems theory (see Perko [124]).

Definition 3.4.

a) A steady state (x̄1, x̄2) is called stable if a solution which starts nearby stays
nearby.

More formally: (x̄1, x̄2) is stable if for all ε > 0, there exists a δ > 0 such
that solutions to initial data (x0

1, x
0
2) with ||(x0

1, x
0
2) − (x̄1, x̄2)|| < δ, satisfy

||(x1(t), x2(t)) − (x̄1, x̄2)|| < ε for all time t > 0. Here, ||.|| denotes the
Euclidean vector norm.

b) A steady state (x̄1, x̄2) which is not stable is called unstable (there is at least
one solution which diverges from (x̄1, x̄2)).

c) A steady state (x̄1, x̄2) is called asymptotically stable if all solutions near (x̄1, x̄2)
converge to (x̄1, x̄2).

More formally: (x̄1, x̄2) is asymptotically stable if (x̄1, x̄2) is stable, and there
exists a δ > 0 such that all solutions with initial data (x0

1, x
0

2), with ||(x0

1, x
0

2)−
(x̄1, x̄2)|| < δ, satisfy limt→∞ ||(x1(t), x2(t))− (x̄1, x̄2)|| = 0.

We can determine the stability of a steady state (x̄1, x̄2) by linearizing (3.23).
The process is similar to the linearization of discrete-time systems, treated in Sec-
tion 2.3.2.

Let

x1(t) = x̄1 + z1(t),

x2(t) = x̄2 + z2(t),

where z1(t) and z2(t) are assumed to be small, so that they can be thought of as
perturbations to the steady state. We denote x̄ = (x̄1, x̄2) and z = (z1, z2), and
write the Taylor expansion of f = (f1, f2) about (x̄1, x̄2):

f(x̄+ z) = f(x̄) +Df(x̄) · z + higher-order terms,
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where

Df(x̄1, x̄2) :=

(
a b
c d

)

=





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2





∣
∣
∣
∣
∣
∣
(x1,x2)=(x̄1,x̄2)

contains the partial derivatives of f evaluated at (x̄1, x̄2) (for a reminder on partial
derivatives, see Section 4.1). The matrix Df(x̄1, x̄2) is called the Jacobian matrix
of f at (x̄1, x̄2).

We substitute the Taylor expansion into (3.23) and we drop the higher-order terms.
Since x′1 = d

dt (x̄1 + z1(t)) = z′1 and x′2 = z′2, and since f(x̄) = 0, we obtain a linear
system governing the dynamics of the perturbation (z1, z2):

d

dt

(
z1
z2

)

=

(
a b
c d

)(
z1
z2

)

. (3.24)

We know already from the previous section how to treat linear systems. For most
(but not all) steady states, conclusions obtained for the linearized system indeed
carry over to the original nonlinear system.

Definition 3.5. (x̄1, x̄2) is called hyperbolic if all eigenvalues of the Jacobian
Df(x̄1, x̄2) have nonzero real part.

Theorem 3.6. (Hartman-Grobman) Assume that (x̄1, x̄2) is a hyperbolic equilib-
rium. Then, in a small neighbourhood of (x̄1, x̄2), the phase portrait of the nonlinear
system, (3.23), is the same as that of the linearized system, (3.24).

Remark 3.4.1.

1) By Theorems 3.3 and 3.6, at a hyperbolic equilibrium x̄, stability properties
are determined by the eigenvalues of the Jacobian matrix, Df(x̄1, x̄2). This
method of linearization may fail for nonhyperbolic equilibria.

2) The phrase “the same as” in the above Theorem refers to topological equivalence
of vector fields. This means that in a neighbourhood of (x̄1, x̄2), there is a
homeomorphism (a continuous one-to-one map between open sets) which maps
the vector field of the nonlinear system to the vector field of its linearization.
In that case, the phase portrait near the stationary point is one of those shown
in Figure 3.10. The theory behind the Hartman-Grobman Theorem is beyond
the scope of this book, and we refer to Perko [124] for more details.

For example the two phase portraits in Figure 3.9 are topologically equivalent,
and the homeomorphism is given by the matrix P from Example 3.4.1.
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3.4.3 Qualitative Analysis of the General Population Interaction
Model

In this section, we use the qualitative theory developed above to re-examine the
general 2-species model, (3.8). From the 10 different cases summarized in Ta-
ble 3.1, we select one example for predator-prey, one example for mutualism, and
one example for competition, and treat these in detail. The other cases are left
as exercises. Before we consider specific cases, we determine the steady states and
their linearizations.

We begin by writing (3.8) in vector notation:

d

dt

(
x
y

)

=

(
f1(x, y)
f2(x, y)

)

, (3.25)

with f1(x, y) = αx + βxy and f2(x, y) = γy + δxy. To find the x-nullcline, nx, we
set f1 = 0. Hence,

nx = {(x, y)|x = 0, or y = −α
β
}.

Similarly, the y-nullcline is

ny = {(x, y)|y = 0, or x = −γ
δ
}.

The steady states (x̄, ȳ) are intersection points of the nullclines, and they satisfy
f1(x̄, ȳ) = 0 and f2(x̄, ȳ) = 0. We find two steady states, namely

P1 = (0, 0) and P2 =

(

−γ
δ
,−α

β

)

.

The linearization of (3.25) is given by

d

dt

(
z1
z2

)

= Df(x̄, ȳ)

(
z1
z2

)

,

and

Df =

(
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

)

=

(
α+ βy βx
δy γ + δx

)

.

We evaluate this matrix at the two steady states, P1 and P2. For P1, we find

Df(0, 0) =

(
α 0
0 γ

)

, (3.26)

which has the two eigenvalues λ1 = α and λ2 = γ. Similarly for P2, we find

Df

(

−γ
δ
,−α

β

)

=

(
0 −βγ

δ

−αδ
β 0

)

= A.
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Figure 3.11. (a) Nullclines; (b) Vector field; and (c) phase portrait for
the 2-species model, (3.8), with sign pattern (−+ +−) (predator-prey).

Since tr A = 0 and det A = −αγ, formula (3.22) gives that the eigenvalues are
given by

λ1/2 = ±√αγ. (3.27)

To identify the type of steady states, we need to have more information. In partic-
ular, we need to know the signs of the parameters α, β, γ, and δ. Analysis of three
specific cases follows.

Case (−+ +−): a predator-prey model

We assume that α < 0, β > 0, γ > 0, and δ < 0. From (3.26), we see that one
eigenvalue is negative (λ1 = α < 0), and the other eigenvalue is positive (λ2 = γ >
0). Hence, P1 = (0, 0) is a saddle.

Before we study P2 =
(

−γ
δ ,−α

β

)

, we have to ensure that it is biologically relevant,

i.e., −γ
δ > 0 and −α

β > 0. Since γ, δ and α, β have opposite signs, this is indeed
true.

In (3.27), the product αγ < 0, so that the eigenvalues are purely imaginary, namely

λ1/2 = ±i
√

|αγ|.

Hence
(

−γ
δ ,−α

β

)

is a center.

Thus, P2 is not hyperbolic, and the Hartman-Grobman theorem does not apply.
We cannot decide the type of steady state: P2 may be a center, a stable spiral,
or an unstable spiral. The theory of Lyapunov functions would help to distinguish
between these three possibilities. However, the study of Lyapunov functions is
beyond the scope of this text, and we refer to Perko [124]. Accept for now that P2

is a nonlinear center. The vector field and the phase portrait for the case (−++−)
are shown in Figure 3.11. We observe predator-prey oscillations between periods of
high and low population sizes.
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Figure 3.12. (a) Nullclines; (b) Vector field; and (c) phase portrait for
the 2-species model, (3.8), with sign pattern (−+−+) (mutualism).
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Figure 3.13. (a) Vector field and (b) phase portrait for the 2-species model,
(3.8), with sign pattern (+−−−) (competition).

Case (− + −+): mutualism of two species which cannot survive alone
(α < 0 and γ < 0)

The eigenvalues of Df(0, 0) are α < 0 and γ < 0 hence (0, 0) is a stable node. Also,
−α

β > 0 and −γ
δ > 0, hence P2 is biologically relevant. The product αγ > 0, hence

P2 is a saddle. The vector field and phase portrait are given in Figure 3.12.

From the phase portrait we see that if the initial populations for x and y are big
enough, then both populations can benefit and grow. If one of them is too small
initially, then both species go extinct (converge to zero).

Case (+−−−): a competition model

In this case (0, 0) is a saddle and P2 is not biologically relevant (− γ
δ < 0). The

vector field and phase portrait are given in Figure 3.13. Population y goes extinct
while population x can grow without competition.

See Exercise 3.9.11 for the remaining cases.


