Math 209

## Assignment 9 - Solutions

1. Evaluate $\iint_{S} \sqrt{4 y+1} d S$ where $S$ is the first octant part of $y=x^{2}$ cut out by $2 x+y+z=1$.

Solution
We need a parametric representation of the surface $S$. In vector form this is: $\vec{r}=\left\langle x, x^{2}, z\right\rangle$ for $(x, z) \in D$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial x}=\langle 1,2 x, 0\rangle, \quad \frac{\partial \vec{r}}{\partial z}=\langle 0,0,1\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial z}=\langle 2 x,-1,0\rangle
$$

To determine the domain $D$, we find the curve of intersection of the surface $S: y=x^{2}$ and the plane: $2 x+y+x=1$ :

$$
\left.\begin{array}{c}
y=x^{2} \\
2 x+y+z=1
\end{array}\right\} \Longrightarrow z=1-2 x-x^{2}
$$

then, for the part in the first octant:

$$
\left.\begin{array}{c}
z=1-2 x-x^{2} \\
z=0
\end{array}\right\} \Longrightarrow x^{2}+2 x-1=0 \Longrightarrow x=-1+\sqrt{2}
$$

Thus, the domain $D$ is given by $D=\left\{(x, z) \in \mathbb{R}^{2} ; 0 \leqslant x \leqslant-1+\sqrt{2}, 0 \leqslant z \leqslant 1-2 x-x^{2}\right\}$. Now to evaluate the surface integral:

$$
\begin{aligned}
\iint_{S} \sqrt{4 y+1} d S & =\iint_{D} \sqrt{4 x^{2}+1}|\vec{N}| d z d x \\
& =\int_{0}^{-1+\sqrt{2}} \int_{0}^{1-2 x-x^{2}}\left(4 x^{2}+1\right) d z d x=\frac{1}{5}(-61+44 \sqrt{2})
\end{aligned}
$$

2. Evaluate $\iint_{S} x y d S$ where $S$ is the first octant part of $z=\sqrt{x^{2}+y^{2}}$ cut out by $x^{2}+y^{2}=1$.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\langle t \cos \theta, t \sin \theta, t\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, \sin \theta, 1\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial t} \times \frac{\partial \vec{r}}{\partial \theta}=\langle-t \cos \theta,-t \sin \theta, t\rangle
$$

The domain $D$ consists of the portion of the surface $S: z=\sqrt{x^{2}+y^{2}}$ that lies within the first octant and within the cylinder $x^{2}+y^{2}=1$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant\right.$ $1,0 \leqslant \theta \leqslant \pi / 2\}$. Now to evaluate the surface integral:

$$
\iint_{S} x y d S=\iint_{D} t^{2} \sin \theta \cos \theta|\vec{N}| d t d \theta=\int_{0}^{\pi / 2} \int_{0}^{1} \sqrt{2} t^{3} \sin \theta \cos \theta d t d \theta=\frac{\sqrt{2}}{8}
$$

3. Calculate the surface area of the curved portion of a right circular cone of radius $R$ and height $h$.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\left\langle t \cos \theta, t \sin \theta, \frac{h t}{R}\right\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\left\langle\cos \theta, \sin \theta, \frac{h}{R}\right\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial t} \times \frac{\partial \vec{r}}{\partial \theta}=\left\langle-\frac{h t}{R} \cos \theta,-\frac{h t}{R} \sin \theta, t\right\rangle
$$

The domain $D$ consists of the portion of the surface $S: z=(h / R) \sqrt{x^{2}+y^{2}}$ that lies within the cylinder $x^{2}+y^{2}=R^{2}$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant R, 0 \leqslant \theta \leqslant 2 \pi\right\}$. Now to evaluate the surface integral:

$$
\iint_{S} d S=\iint_{D}|\vec{N}| d t d \theta=\int_{0}^{2 \pi} \int_{0}^{R} t \sqrt{1+\left(h^{2} / R^{2}\right)} d t d \theta=\pi R \sqrt{R^{2}+h^{2}}
$$

4. Evaluate $\iint_{S} \frac{d S}{x^{2}+y^{2}}$ where $S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=4 R^{2}$ between the planes $z=0$ and $z=R$.

## Solution

We need a parametric representation of the sphere $S$. The easiest way to paremeterize the sphere is to use spherical coordinates with $\rho=2 R$, so in vector form this is: $\vec{r}=2 R\langle\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi\rangle$ for $(t, \theta) \in D$. Now determine the normal vector:

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial \varphi} & =2 R\langle\cos \varphi \cos \theta, \cos \varphi \sin \theta,-\sin \varphi\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=2 R\langle-\sin \varphi \sin \theta, \sin \varphi \cos \theta, 0\rangle \\
\vec{N} & =\frac{\partial \vec{r}}{\partial t} \times \frac{\partial \vec{r}}{\partial \theta}=4 R^{2}\left\langle-\sin ^{2} \varphi \cos \theta, \sin ^{2} \varphi \sin \theta, \sin \varphi \cos \varphi\right\rangle
\end{aligned}
$$

The domain $D$ consists of the portion of the surface $S$ that lies within the planes $z=0$ and $z=R$. In spherical coordinates these correspond to $\varphi=\pi / 2$ and $\varphi=\pi / 3$ respectively. Thus, the domain $D$ is: $D=\left\{(\varphi, \theta) \in \mathbb{R}^{2} ; \pi / 3 \leqslant \varphi \leqslant \pi / 2,0 \leqslant \theta \leqslant 2 \pi\right\}$. Now to evaluate the surface integral:

$$
\iint_{S} \frac{d S}{x^{2}+y^{2}}=\iint_{D} \frac{|\vec{N}|}{4 R^{2} \sin ^{2} \varphi} d \varphi d \theta=\int_{0}^{2 \pi} \int_{\pi / 3}^{\pi / 2} \csc \varphi d \varphi d \theta=\pi \ln 3 .
$$

5. Evaluate $\iint_{S}\left(y z^{2} \vec{i}+y e^{x} \vec{j}+x \vec{k}\right) \cdot \vec{n} d S$ where $S$ is defined by $y=x^{2}, 0 \leqslant y \leqslant 4,0 \leqslant z \leqslant 1$, and $\vec{n}$ is the unit normal to the surface $S$ with positive $y$-component.

## Solution

We need a parametric representation of the surface $S$. In vector form this is: $\vec{r}=\left\langle x, x^{2}, z\right\rangle$ for $(x, z) \in D$, where $D=\left\{(x, z) \in \mathbb{R}^{2} ;-2 \leqslant x \leqslant 2,0 \leqslant z \leqslant 1\right\}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial x}=\langle 1,2 x, 0\rangle, \quad \frac{\partial \vec{r}}{\partial z}=\langle 0,0,1\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial z}=\langle 2 x,-1,0\rangle
$$

Now, to evaluate the surface integral:

$$
\begin{aligned}
\iint_{S}\left(y z^{2} \vec{i}+y e^{x} \vec{j}+x \vec{k}\right) \cdot \vec{n} d S & =\iint_{D}\left(x^{2} z^{2} \vec{i}+x^{2} e^{x} \vec{j}+x \vec{k}\right) \cdot \vec{N} d x d z \\
& =\int_{0}^{1} \int_{-2}^{2}\left(-2 x^{3} z+x^{2} e^{x}\right) d x d z=2 e^{2}-10 e^{-2}
\end{aligned}
$$

6. Evaluate $\iint_{S}(x \vec{i}+y \vec{j}) \cdot \vec{n} d S$ where $S$ is the part of $z=\sqrt{x^{2}+y^{2}}$ below $z=1$, and $\vec{n}$ is the unit normal to the surface $S$ with negative $z$-component.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\langle t \cos \theta, t \sin \theta, t\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, \sin \theta, 1\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial t}=\langle t \cos \theta,-t \sin \theta,-t\rangle
$$

The domain $D$ consists of the portion of the surface $S$ that lies below $z=1$, i.e. in the region $x^{2}+y^{2} \leqslant 1$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant 1,0 \leqslant \theta \leqslant 2 \pi\right\}$. Now to evaluate the surface integral:

$$
\iint_{S}(x \vec{i}+y \vec{j}) \cdot \vec{n} d S=\iint_{D}(t \cos \theta \vec{i}+t \sin \theta \vec{j}) \cdot \vec{N} d t d \theta=\int_{0}^{2 \pi} \int_{0}^{1} t d t d \theta=\frac{2 \pi}{3}
$$

7. Evaluate $\iint_{S}\left(x^{2} y \vec{i}+x y \vec{j}+z \vec{k}\right) \cdot \vec{n} d S$ where $S$ is defined by $z=2-x^{2}-y^{2}, z \geqslant 0$, and $\vec{n}$ is the unit normal to the surface $S$ with negative $z$-component.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\left\langle t \cos \theta, t \sin \theta, 2-t^{2}\right\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, \sin \theta,-2 t\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial t}=\left\langle-2 t^{2} \cos \theta,-2 t^{2} \sin \theta,-t\right\rangle
$$

The domain $D$ consists of the portion of the surface $S$ for which $z \geqslant 0$, i.e. in the region $x^{2}+y^{2} \leqslant 2$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant \sqrt{2}, 0 \leqslant \theta \leqslant 2 \pi\right\}$. Now to evaluate the surface integral:

$$
\begin{aligned}
\iint_{S}\left(x^{2} y \vec{i}+x y \vec{j}+z \vec{k}\right) \cdot \vec{n} d S & =\iint_{D}\left(t^{3} \cos ^{2} \theta \sin \theta \vec{i}+t^{2} \cos \theta \sin \theta \vec{j}+\left(2-t^{2}\right) \vec{k}\right) \cdot \vec{N} d t d \theta \\
& =\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi}\left(-2 t^{5} \cos ^{3} \theta \sin \theta-2 t^{4} \cos \theta \sin ^{2} \theta-2 t+t^{3}\right) d \theta d t \\
& =\left.\int_{0}^{\sqrt{2}}\left(t^{5} \frac{\cos ^{4} \theta}{2}-2 t^{4} \frac{\sin ^{3} \theta}{3}+\left(t^{3}-2 t\right) \theta\right)\right|_{0} ^{2 \pi} d t \\
& =2 \pi \int_{0}^{\sqrt{2}}\left(t^{3}-2 t\right) d t=-2 \pi
\end{aligned}
$$

8. Find the centroid of the surface $S$ consisting of the part of $z=2-x^{2}-y^{2}$ above the $x y$-plane.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\left\langle t \cos \theta, t \sin \theta, 2-t^{2}\right\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, \sin \theta,-2 t\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial t}=\left\langle-2 t^{2} \cos \theta,-2 t^{2} \sin \theta,-t\right\rangle
$$

The domain $D$ consists of the portion of the surface $S$ for which $z \geqslant 0$, i.e. in the region $x^{2}+y^{2} \leqslant 2$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant \sqrt{2}, 0 \leqslant \theta \leqslant 2 \pi\right\}$. The area of $S$ is given by:

$$
A(S)=\iint_{S} d S=\iint_{D}|\vec{N}| d t d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} t \sqrt{1+4 t^{2}} d t d \theta=\frac{13 \pi}{3}
$$

By symmetry, it follows that $\bar{x}=\bar{y}=0$. Thus, $z$-component of the centroid is:

$$
\bar{z}=\frac{1}{A(S)} \iint_{S} z d S=\frac{1}{A(S)} \iint_{D}\left(2-t^{2}\right)|\vec{N}| d t d \theta=\frac{1}{A(S)} \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} t\left(2-t^{2}\right) \sqrt{1+4 t^{2}} d t d \theta=\frac{27 \pi}{2 A(S)}
$$

Thus, the centroid is: $(\bar{x}, \bar{y}, \bar{z})=\left(0,0, \frac{111}{130}\right)$.
9. Find the moment of inertia about the $z$-axis of the surface $S$ consisting of the part of $z=2-x^{2}-y^{2}$ above the $x y$-plane.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a surface of revolution we can use polar coordinates, so in vector form this is: $\vec{r}=\left\langle t \cos \theta, t \sin \theta, 2-t^{2}\right\rangle$ for $(t, \theta) \in D$, where we have used $t$ in place of $r$ to avoid confusion with the position vector $\vec{r}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, \sin \theta,-2 t\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-t \sin \theta, t \cos \theta, 0\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial t}=\left\langle-2 t^{2} \cos \theta,-2 t^{2} \sin \theta,-t\right\rangle
$$

The domain $D$ consists of the portion of the surface $S$ for which $z \geqslant 0$, i.e. in the region $x^{2}+y^{2} \leqslant 2$. In polar coordinates $(t, \theta)$, this gives $D=\left\{(t, \theta) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant \sqrt{2}, 0 \leqslant \theta \leqslant 2 \pi\right\}$. The moment of inertia about the $z$-axis is:

$$
I_{z}=\frac{1}{A(S)} \iint_{S}\left(x^{2}+y^{2}\right) d S=\iint_{D} t^{2}|\vec{N}| d t d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} t^{3} \sqrt{1+4 t^{2}} d t d \theta=\frac{149 \pi}{130}
$$

10. A circular tube $S: x^{2}+z^{2}=1,0 \leqslant y \leqslant 2$ is a model for a part of an artery. Blood flows through the artery and the force per unit area at any point on the arterial wall is given by

$$
\vec{F}=e^{-y} \vec{n}+\frac{1}{y^{2}+1} \vec{j}
$$

where $\vec{n}$ is the unit outer normal to the arterial wall. Blood diffuses through the wall in such a way that if $d S$ is a small area on $S$, the amount of diffusion through $d S$ in one second is $\vec{F} \cdot \vec{n} d S$. Find the total amount of blood leaving the entire wall per second.

## Solution

We need a parametric representation of the surface $S$. Since $S$ is a cylinder with axis parallel to the $y$-axis, the most prudent way to parameterize the surface is by using polar coordinate $\theta$ in the $x z$-plane and $y$ as the parameters, so in vector form this is: $\vec{r}=\langle\cos \theta, y, \sin \theta\rangle$ for $(y, \theta) \in D$, where $D=\left\{(y, \theta) \in \mathbb{R}^{2} ; 0 \leqslant y \leqslant 2,0 \leqslant \theta \leqslant 2 \pi\right\}$. Now determine the normal vector:

$$
\frac{\partial \vec{r}}{\partial y}=\langle 0,1,0\rangle, \quad \frac{\partial \vec{r}}{\partial \theta}=\langle-\sin \theta, 0, \cos \theta\rangle, \quad \vec{N}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial t}=\langle\cos \theta, 0, \sin \theta\rangle
$$

The unit normal $\vec{n}$ and surface element $d S$ are given by:

$$
\vec{n}=\frac{\vec{N}}{|\vec{N}|}=\langle\cos \theta, 0, \sin \theta\rangle, \quad d S=|\vec{N}| d y d \theta=d y d \theta
$$

The total amount of blood leaving the entire wall per second is:

$$
\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D}\left(e^{-y} \vec{n}+\frac{1}{y^{2}+1} \vec{j}\right) \cdot \vec{n} d y d \theta=\int_{0}^{2 \pi} \int_{0}^{2} e^{-y} d y d \theta=2 \pi\left(1-e^{-2}\right)
$$

