Assignment 8 - Solutions

1. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
(a) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y, C$ is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

Solution:

$$
\begin{aligned}
& \int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(2 x+\cos y^{2}\right)-\frac{\partial}{\partial y}\left(y+e^{\sqrt{x}}\right)\right] d A \\
&=\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}}(2-1) d x d y=\int_{0}^{1}\left(\sqrt{y}-y^{2}\right) d y=\frac{1}{3}
\end{aligned}
$$

(b) $\int_{C} \sin y d x+x \cos y d y, C$ is the ellipse $x^{2}+x y+y^{2}=1$.

Solution:

$$
\int_{C} \sin y d x+x \cos y d y=\iint_{D}\left[\frac{\partial}{\partial x}(x \cos y)-\frac{\partial}{\partial y}(\sin y)\right] d A=\iint_{D}(\cos y-\cos y) d A=0
$$

2. If f is a harmonic function, that is $\nabla^{2} f=0$, show that the line integral $\int f_{y} d x-f_{x} d y$ is independent of path in any simple region D.

Solution:

$\nabla^{2} f=0$ means that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$ Now if $\mathbf{F}=f_{y} \mathbf{i}-f_{x} \mathbf{j}$ and C is any closed path in D, then applying Green's Theorem, we get

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d r=\int_{C} f_{y} d x-f_{x} d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(-f_{x}\right)-\frac{\partial}{\partial y}\left(f_{y}\right)\right] d A \\
=-\iint_{D}\left(f_{x x}+f_{y y}\right) d A=0
\end{gathered}
$$

3. Find the area enclosed by the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$.

Solution:

The astroid has parametric equations $x=\cos ^{3} t, y=\sin ^{3} t$, where $0 \leq t \leq 2 \pi$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{C} x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi} \cos ^{3} t \cdot\left(3 \cos t \sin ^{2} t\right) d t-\sin ^{3} t \cdot\left(-3 \sin t \cos ^{2} t\right) d t \\
=\frac{1}{2} \int_{0}^{2 \pi}\left(3 \cos ^{4} t \sin ^{2} t+3 \sin ^{4} t \cos ^{2} t\right) d t=\frac{1}{2} \int_{0}^{2 \pi} 3 \cos ^{2} t \sin ^{2} t d t \\
=\frac{3}{4} \int_{0}^{2 \pi} \sin ^{2} 2 t d t=\frac{3}{4} \int_{0}^{2 \pi} \frac{1-\cos 4 t}{2} d t=\frac{3 \pi}{4} .
\end{gathered}
$$

4. Let

$$
I=\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

where C is a circle oriented counterclockwise.
(a) Show that $I=0$ if C does not contain the origin.

Solution:

Let $P=\frac{y}{x^{2}+y^{2}}, Q=\frac{-x}{x^{2}+y^{2}}$ and let D be the region bounded by $C . P$ and Q have continuous partial derivatives on an open region that contains region D. By Green's Theorem,

$$
\begin{gathered}
I=\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \\
=\iint_{D}\left[\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d x d y=0
\end{gathered}
$$

(b) What is I if C contain the origin?

Solution:

The functions $P=\frac{y}{x^{2}+y^{2}}$ and $Q=\frac{-x}{x^{2}+y^{2}}$ are discontinuous at (0,0), so we can not apply the Green's Theorem to the circle C and the region inside it. We use the definition of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

$$
\begin{gathered}
\int_{C} P d x+Q d y=\int_{C_{r}} P d x+Q d y=\int_{0}^{2 \pi} \frac{r \sin t(-r \sin t)+(-r \cos t)(r \cos t)}{r^{2} \cos ^{2} t+r^{2} \sin ^{2} t} d t \\
=\int_{0}^{2 \pi}-d t=-2 \pi
\end{gathered}
$$

5. Find the curl and the divergence of the vector field $\mathbf{F}=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}+z \mathbf{k}$. Is \mathbf{F} conservative?

Solution:

$$
\begin{gathered}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} \sin y & e^{x} \cos y & z
\end{array}\right| \\
=(0-0) \mathbf{i}+(0-0) \mathbf{j}+\left(e^{x} \sin y-e^{x} \sin y\right) \mathbf{k}=0 \\
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(e^{x} \sin y\right)+\frac{\partial}{\partial y}\left(e^{x} \cos y\right)+\frac{\partial}{\partial z}(z)=e^{x} \sin y-e^{x} \sin y+1=1 .
\end{gathered}
$$

Since curl $\mathbf{F}=0$ and the domain of \mathbf{F} is R^{3} and its components have continuous partial derivatives, \mathbf{F} is a conservative vector field.
6. Is there a vector field \mathbf{G} on R^{3} such that $\operatorname{curl} \mathbf{G}=x y^{2} \mathbf{i}+y z^{2} \mathbf{j}+z x^{2} \mathbf{k}$? Explain.

Solution:

No. Assume there is such a \mathbf{G}. Then $\operatorname{div}(\operatorname{curlG})=y^{2}+z^{2}+x^{2} \neq 0$, which contradicts Theorem (If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on R^{3} and P, Q and R have continuous second-order partial derivatives, then $\operatorname{div}(\operatorname{curl} \mathbf{F})=0)$.
7. Identify the surface with the given vector equation.
(a) $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u^{2} \mathbf{k}$

Solution:

$\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u^{2} \mathbf{k}$, so the corresponding parametric equations for the surface are $x=u \cos v, y=u \sin v$ and $z=u^{2}$. For any point (x, y, z) on the surface, we have $x^{2}+y^{2}=u^{2} \cos ^{2}+u^{2} \sin ^{2} v=u^{2}=z$. Since no restrictions are placed on the parameters, the surface is $z=x^{2}+y^{2}$. Which we recognize as a circular paraboloid opening upward whose axis is the z-axis.
(b) $\mathbf{r}(x, \theta)=\langle x, x \cos \theta, x \sin \theta\rangle$

Solution:

$\mathbf{r}(x, \theta)=\langle x, x \cos \theta, x \sin \theta\rangle$, so the corresponding parametric equations for the surface are $x=x, y=x \cos \theta$ and $z=u x \sin \theta$. For any point (x, y, z) on the surface, we have $y^{2}+z^{2}=x \cos ^{2} \theta+x \sin ^{2} \theta=x^{2}$. Whit $x=x$ and no restrictions on the parameters, the surface is $y^{2}+z^{2}=x^{2}$, Which we recognize as a circular con opening whose axis is the x-axis.
8. Find a parametric representation for the surface.
(a) The part of elliptic paraboloid $x+y^{2}+2 z^{2}=4$ that lies in front of the plane $x=0$

Solution:

$x=4-y^{2}-2 z^{2}, y=y, z=z$, where $y^{2}+2 z^{2} \leq 4$ since $x \geq 0$. Then the associated vector equation is $\mathbf{r}(y, z)=\left(4-y^{2}-2 z^{2}\right) \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
(b) The part of sphere $x^{2}+y^{2}+z^{2}=16$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$

Solution:

Since the cone intersects the sphere in the circle $x^{2}+y^{2}=8, z=2 \sqrt{2}$ and we want the portion of the sphere above this, we can parameterize the surface $x=x, y=y, z=$ $\sqrt{4-x^{2}-y^{2}}$ where $x^{2}+y^{2} \leq 8$.
Alternate Solution: Using spherical coordinates, $x=4 \sin \phi \cos \theta, y=4 \sin \phi \cos \theta, z=$ $4 \cos \phi$ where $0 \leq \phi \leq \frac{\pi}{4}$ and $0 \leq \theta \leq 2 \pi$.
9. Find the area of the part of the surface $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Solution:

$z=y^{2}-x^{2}$ with $1 \leq x^{2}+y^{2} \leq 4$. Then

$$
\begin{gathered}
A(S)=\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A=\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{1}^{2} \sqrt{1+4 r^{2}} r d r \\
=[\theta]_{0}^{2 \pi}\left[\frac{1}{12}\left(1+4 r^{2}\right)^{\frac{3}{2}}\right]_{1}^{2}=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{gathered}
$$

10. Find the area of the part of the surface $z=x^{2}+2 y$ that lies above the triangle with vertices $(0,0),(1,0)$, and (1,2).

Solution:

$z=x^{2}+2 y$ with $0 \leq x \leq 1,0 \leq y \leq 2 x$. Then

$$
\begin{gathered}
A(S)=\iint_{D} \sqrt{1+4 x^{2}+4} d A=\int_{0}^{1} \int_{1}^{2 x} \sqrt{5+4 x^{2}} d x d y=\int_{0}^{1} 2 x \sqrt{5+4 x^{2}} d x \\
=\frac{1}{4}\left[\frac{2}{3}\left(5+4 x^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}=\frac{9}{2}
\end{gathered}
$$

