$\frac{\text{Math 209}}{\text{Assignment 8} - \text{Solutions}}$

1. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. (a) $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

Solution:

$$\int_{C} (y + e^{\sqrt{x}}) dx + (2x + \cos y^{2}) dy = \int \int_{D} \left[\frac{\partial}{\partial x} (2x + \cos y^{2}) - \frac{\partial}{\partial y} (y + e^{\sqrt{x}}) \right] dA$$
$$= \int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} (2 - 1) dx \, dy = \int_{0}^{1} (\sqrt{y} - y^{2}) dy = \frac{1}{3}.$$

(b) $\int_C \sin y \, dx + x \cos y \, dy$, C is the ellipse $x^2 + xy + y^2 = 1$.

Solution:

$$\int_C \sin y \, dx + x \cos y \, dy = \int \int_D \left[\frac{\partial}{\partial x} (x \cos y) - \frac{\partial}{\partial y} (\sin y) \right] dA = \int \int_D (\cos y - \cos y) dA = 0$$

2. If f is a harmonic function, that is $\nabla^2 f = 0$, show that the line integral $\int f_y dx - f_x dy$ is independent of path in any simple region D.

Solution:

 $\nabla^2 f = 0$ means that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ Now if $\mathbf{F} = f_y \mathbf{i} - f_x \mathbf{j}$ and C is any closed path in D, then applying Green's Theorem, we get

$$\int_{C} \mathbf{F} \cdot dr = \int_{C} f_{y} dx - f_{x} dy = \int \int_{D} \left[\frac{\partial}{\partial x} (-f_{x}) - \frac{\partial}{\partial y} (f_{y}) \right] dA$$
$$= -\int \int_{D} (f_{xx} + f_{yy}) dA = 0.$$

3. Find the area enclosed by the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$.

Solution:

The astroid has parametric equations $x = \cos^3 t$, $y = \sin^3 t$, where $0 \le t \le 2\pi$.

$$A = \frac{1}{2} \int_C x dy - y dx = \frac{1}{2} \int_0^{2\pi} \cos^3 t \cdot (3\cos t\sin^2 t) dt - \sin^3 t \cdot (-3\sin t\cos^2 t) dt$$
$$= \frac{1}{2} \int_0^{2\pi} (3\cos^4 t\sin^2 t + 3\sin^4 t\cos^2 t) dt = \frac{1}{2} \int_0^{2\pi} 3\cos^2 t\sin^2 t \, dt$$
$$= \frac{3}{4} \int_0^{2\pi} \sin^2 2t \, dt = \frac{3}{4} \int_0^{2\pi} \frac{1 - \cos 4t}{2} dt = \frac{3\pi}{4}.$$

4. Let

$$I = \int_C \frac{ydx - xdy}{x^2 + y^2}$$

where C is a circle oriented counterclockwise.

(a) Show that I = 0 if C does not contain the origin.

Solution:

Let $P = \frac{y}{x^2+y^2}$, $Q = \frac{-x}{x^2+y^2}$ and let *D* be the region bounded by *C*. *P* and *Q* have continuous partial derivatives on an open region that contains region *D*. By Green's Theorem,

$$I = \int_{C} \frac{y dx - x dy}{x^{2} + y^{2}} = \int_{C} P dx + Q dy = \int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
$$= \int \int_{D} \left[\frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} - \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} \right] dx dy = 0.$$

(b) What is I if C contain the origin?

Solution:

The functions $P = \frac{y}{x^2+y^2}$ and $Q = \frac{-x}{x^2+y^2}$ are discontinuous at (0,0), so we can not apply the Green's Theorem to the circle C and the region inside it. We use the definition of $\int_C \mathbf{F} \cdot d\mathbf{r}$.

$$\int_{C} Pdx + Qdy = \int_{C_{r}} Pdx + Qdy = \int_{0}^{2\pi} \frac{r\sin t(-r\sin t) + (-r\cos t)(r\cos t)}{r^{2}\cos^{2} t + r^{2}\sin^{2} t} dt$$
$$= \int_{0}^{2\pi} -dt = -2\pi.$$

5. Find the curl and the divergence of the vector field $\mathbf{F} = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j} + z \, \mathbf{k}$. Is \mathbf{F} conservative?

Solution:

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^x \sin y & e^x \cos y & z \end{vmatrix}$$
$$= (0-0) \mathbf{i} + (0-0) \mathbf{j} + (e^x \sin y - e^x \sin y) \mathbf{k} = 0.$$
$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (e^x \sin y) + \frac{\partial}{\partial y} (e^x \cos y) + \frac{\partial}{\partial z} (z) = e^x \sin y - e^x \sin y + 1 = 1.$$

Since curl $\mathbf{F} = 0$ and the domain of \mathbf{F} is R^3 and its components have continuous partial derivatives, \mathbf{F} is a conservative vector field.

6. Is there a vector field **G** on R^3 such that curl $\mathbf{G} = xy^2 \mathbf{i} + yz^2 \mathbf{j} + zx^2 \mathbf{k}$? Explain.

Solution:

No. Assume there is such a **G**. Then div(curl \mathbf{G}) = $y^2 + z^2 + x^2 \neq 0$, which contradicts Theorem (If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is a vector field on R^3 and P, Q and R have continuous second-order partial derivatives, then div(curl \mathbf{F}) = 0).

7. Identify the surface with the given vector equation.

(a) $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + u^2 \mathbf{k}$

Solution:

 $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + u^2 \mathbf{k}$, so the corresponding parametric equations for the surface are $x = u \cos v$, $y = u \sin v$ and $z = u^2$. For any point (x, y, z) on the surface, we have $x^2 + y^2 = u^2 \cos^2 + u^2 \sin^2 v = u^2 = z$. Since no restrictions are placed on the parameters, the surface is $z = x^2 + y^2$. Which we recognize as a circular paraboloid opening upward whose axis is the z-axis.

(b) $\mathbf{r}(x,\theta) = \langle x, x\cos\theta, x\sin\theta \rangle$

Solution:

 $\mathbf{r}(x,\theta) = \langle x, x\cos\theta, x\sin\theta \rangle$, so the corresponding parametric equations for the surface are x = x, $y = x\cos\theta$ and $z = ux\sin\theta$. For any point (x, y, z) on the surface, we have $y^2 + z^2 = x\cos^2\theta + x\sin^2\theta = x^2$. Whit x = x and no restrictions on the parameters, the surface is $y^2 + z^2 = x^2$, Which we recognize as a circular con opening whose axis is the *x*-axis.

8. Find a parametric representation for the surface.

(a) The part of elliptic paraboloid $x + y^2 + 2z^2 = 4$ that lies in front of the plane x = 0

Solution:

 $x = 4 - y^2 - 2z^2$, y = y, z = z, where $y^2 + 2z^2 \le 4$ since $x \ge 0$. Then the associated vector equation is $\mathbf{r}(y, z) = (4 - y^2 - 2z^2)\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

(b) The part of sphere $x^2 + y^2 + z^2 = 16$ that lies above the cone $z = \sqrt{x^2 + y^2}$

Solution:

Since the cone intersects the sphere in the circle $x^2 + y^2 = 8$, $z = 2\sqrt{2}$ and we want the portion of the sphere above this, we can parameterize the surface x = x, y = y, $z = \sqrt{4 - x^2 - y^2}$ where $x^2 + y^2 \leq 8$.

<u>Alternate Solution</u>: Using spherical coordinates, $x = 4 \sin \phi \cos \theta$, $y = 4 \sin \phi \cos \theta$, $z = 4 \cos \phi$ where $0 \le \phi \le \frac{\pi}{4}$ and $0 \le \theta \le 2\pi$.

9. Find the area of the part of the surface $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Solution:

$$z = y^{2} - x^{2} \text{ with } 1 \le x^{2} + y^{2} \le 4. \text{ Then}$$

$$A(S) = \int \int_{D} \sqrt{1 + 4x^{2} + 4y^{2}} \, dA = \int_{0}^{2\pi} \int_{1}^{2} \sqrt{1 + 4r^{2}} \, r \, dr \, d\theta = \int_{0}^{2\pi} d\theta \int_{1}^{2} \sqrt{1 + 4r^{2}} \, r \, dr$$

$$= \left[\theta\right]_{0}^{2\pi} \left[\frac{1}{12}(1 + 4r^{2})^{\frac{3}{2}}\right]_{1}^{2} = \frac{\pi}{6}(17\sqrt{17} - 5\sqrt{5}).$$

10. Find the area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0,0), (1,0), and (1,2).

Solution:

 $z = x^2 + 2y$ with $0 \le x \le 1$, $0 \le y \le 2x$. Then

$$\begin{aligned} A(S) &= \int \int_D \sqrt{1 + 4x^2 + 4} \, dA \, = \, \int_0^1 \int_1^{2x} \sqrt{5 + 4x^2} \, dx \, dy \, = \, \int_0^1 2x \sqrt{5 + 4x^2} \, dx \\ &= \frac{1}{4} \left[\frac{2}{3} (5 + 4x^2)^{\frac{3}{2}} \right]_0^1 \, = \, \frac{9}{2} \, . \end{aligned}$$