
Math 209
Solutions to Assignment 7

Due: 12 Noon on Thursday, November 10, 2005

1. Find the gradient vector field of the following functions:
(a) f(x, y) = ln(x + 2y);

(b) f(x, y, z) = x cos(y/z).
Solution. (a)

fx =
1

x + 2y
, fy =

2
x + 2y

.

Thus, the gradient vector field is

∇f =
( 1

x + 2y
,

2
x + 2y

)
=

1
x + 2y

i +
2

x + 2y
j.

(b)
fx = cos(y/z)), fy = −x

z
sin(y/z), fz =

xy

z2
sin(y/z).

Thus, the gradient vector field is

∇f =
(
cos(y/z)),−x

z
sin(y/z),

xy

z2
sin(y/z)

)
= cos(y/z)) i− x

z
sin(y/z) j +

xy

z2
sin(y/z) k.

2. Suppose f(x, y) = x2 − y2. Find
∫

C

f ds where

(a) C is formed from the edges of a triangle with vertices at (0, 0), (2, 1) and (1, 2).
(b) C is a circle of radius 2 centered at the origin.
Solution. (a) For convenience, we denote by C1, C2 and C3 the line segments from (0, 0) to (2, 1),
from (2, 1) to (1, 2) and from (1, 2) to (0, 0), respectively. Then C = C1+C2+C3 and the parametric
equations of C1, C2 and C3 as given as follows:

C1 :

{
x = 0 · (1− t) + 2t = 2t
y = 0 · (1− t) + t = t,

0 ≤ t ≤ 1,

C2 :

{
x = 2 · (1− t) + t = 2− t

y = 1(1− t) + 2t = t + 1,
0 ≤ t ≤ 1,

C3 :

{
x = 1 · (1− t) + 0 · t = 1− t

y = 2(1− t) + 0 · t = 2− 2t,
0 ≤ t ≤ 1,

Thus,∫
C

f ds =
∫

C1

f ds +
∫

C2

f ds +
∫

C3

f ds

=
∫ 1

0

(4t2 − t2)
√

5 dt +
∫ 1

0

(
(2− t)2 − (t + 1)2

)√
2 dt +

∫ 1

0

(
(1− t)2 − 4(1− t)2

)√
5 dt

= 3
√

5
∫ 1

0

t2 dt +
√

2
∫ 1

0

(3− 6t) dt +
√

5
∫ 1

0

(−3 + 6t− 3t2) dt

= 0.
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(b) The paramentric equation of C is{
x = 2 cos t

y = 2 sin t,
0 ≤ t ≤ 2π.

Thus ∫
C

f ds =
∫ 2π

0

(
4 cos2 t− 4 sin2 t

)√
4 sin2 t + 4 cos2 t dt

= 8
∫ 2π

0

cos(2t) = 4 sin(2t)
∣∣∣2π

0
= 0.

3. Evaluate
∫

C

(x + yz) dx + 2x dy + xyz dz, where C consists of line segments from (1, 0, 1) to (2, 3, 1)

and from (2, 3, 1) to (2, 5, 2).
Solution. We denote by C1 and C2 the line segments from (1, 0, 1) to (2, 3, 1) and from (2, 3, 1) to
(2, 5, 2), respectively. Then

C1 : (x(t), y(t), z(t)) = (1, 0, 1)(1− t) + t(2, 3, 1) = (1 + t, 3t, 1), 0 ≤ t ≤ 1,

C2 : (x(t), y(t), z(t)) = (2, 3, 1)(1− t) + t(2, 5, 2) = (2, 3 + 2t, 1 + t), 0 ≤ t ≤ 1.

Thus,∫
C1

(x + yz) dx + 2x dy + xyz dz =
∫ 1

0

(
(1 + t + 3t) + 2(1 + t) · 3 + 3t(1 + t) · 0

)
dt

=
∫ 1

0

(7 + 10t) dt = 12,∫
C2

(x + yz) dx + 2x dy + xyz dz =
∫ 1

0

(
(2 + (3 + 2t)(1 + t)) · 0 + 8 + 2(3 + 2t)(1 + t)

)
dt

=
∫ 1

0

(14 + 10t + 4t2) dt =
61
3

.

Therefore ∫
C

=
∫

C1

+
∫

C2

= 12 +
61
3

=
97
3

.

4. The formula for a cycloid is given parametrically by (t− sin(t), 1− cos(t)). Find the length of the
curve over one cycle 0 ≤ t ≤ 2π.
Solution. The length is∫ 2π

0

√
(x′(t))2 + (y′(t))2 dt =

∫ 2π

0

√
(1− cos t)2 + sin2 t dt

=
∫ 2π

0

√
2− 2 cos t dt = 2

∫ 2π

0

sin
t

2
dt = 8.

5. Determine whether or not F is a conservative vector field, if it is, find a function f such that
F = ∇f .

(a) F(x, y) = (2x cos y − y cos x)i + (−x2 sin y − sinx)j.

(b) F(x, y) = (yex + sin y)i + (ex + x cos y)j.
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Solution. (a) Let

P (x, y) = 2x cos y − y cos x, Q(x, y) = −x2 sin y − sinx.

Since
Py = −2x sin y − cos x = Qx

throughout the open, simply connected domain R2, it follows that F is conservative.
Now assume ∇f = F. Then

fx = P = 2x cos y − y cos x,

and hence
f =

∫
P (x, y) dx + g(y) = x2 cos y − y sinx + g(y).

On the the hand, since fy = Q,

∂

∂y

(
x2 cos y − y sinx + g(y)

)
= −x2 sin y − sinx,

that is
−x2 sin y − sinx + g′(y) = −x2 sin y − sinx.

Thus, g′(y) = 0 and g(y) = K, where K is a constant. Therefore

f(x, y) = x2 cos y − y sinx + K.

(b) Let
P (x, y) = yex + sin y, Q(x, y) = ex + x cos y.

Then
Py = ex + cos y = Qx

throughout R2. Thus, F is conservative.
Now assume ∇f = F. Then

f(x, y) =
∫

P (x, y) dx + g(y) = yex + x sin y + g(y).

Since fy = Q,
∂

∂y

(
yex + x sin y + g(y)

)
= ex + x cos y.

It follows that g′(y) = 0 and hence g(y) = K. Therefore

f(x, y) = yex + x sin y + K.

6. Evaluate
∫

C

F · dr along the given curve C:

(a) F(x, y) =
( y2

1 + x2

)
i +

(
2y arctanx

)
j, C : r(t) = (t2) i + (2t) j, 0 ≤ t ≤ 1.

(b) F(x, y, z) = (y2 cos z)i + (2xy cos z)j− (xy2 sin z)k, C : r(t) = (t2) i + (sin t) j + t k,

0 ≤ t ≤ π.

Solution. (a) Let

P (x, y) =
y2

x2 + 1
, Q(x, y) = 2y arctanx.
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Then it’s easy to verify that
∇f = F = (P,Q),

where
f(x, y) = y2 arctanx.

It follows by the fundamental theorem that∫
C

F · dr =
∫

C

∇f · dr = f(r(1))− f(r(0)) = f(1, 2)− f(0, 0) = π.

(b) Let
f(x, y, z) = xy2 cos z.

Then it’s easy to verify that

∇f = (y2 cos z, 2xy cos z,−xy2 sin z) = F.

Therefore, ∫
C

F · dr =
∫

C

∇f · dr = f(r(π))− f(r(0)) = f(π2, 0, π)− f(0, 0, 0) = 0.

7. Show that the line integral is independent of path and evaluate the integral:∫
C

(1− ye−x) dx + e−x dy,

where C is any path from (0, 1) to (1, 2).
Solution. Let

F = (1− ye−x, e−x) ≡ (P,Q).

Suppose the equation of C is given by
r = r(t).

Then ∫
C

(1− ye−x) dx + e−x dy =
∫

C

P dx + Qdy =
∫

C

F · dr.

Let
f(x, y) = x + ye−x.

then it is easy to verify that
∇f = F.

Therefore F is conservative and the integral
∫

C

F · dr is independent of path. Moreover, by the

fundamental theorem, ∫
C

F · dr =
∫

C

∇f · dr = f(1, 2)− f(0, 1) = 2e−1.

8. Find the work done by the force field F(x, y) = (y2/x2) i − (2y/x) j in moving an object from
P (1, 1) to Q(4,−2).
Solution. Let

f(x, y) = −y2

x
.

Then

∇f = (
y2

x2
,−2y

x
) = F.
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Therefore the work done by the force field F(x, y) = (y2/x2) i− (2y/x) j in moving an object from
P (1, 1) to Q(4,−2) is∫

C

F · dr =
∫

C

∇f · dr = f(4,−2)− f(1, 1) = −1− (−1) = 0.

9. Show that if the vector field F = P i + Q j + R k is conservative and P,Q,R have continuous
first-order partial derivatives, then

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

Solution. Suppose
F = P i + Q j + R k

is conservative. Then there exists a function f(x, y, z) such that

fx = P, fy = Q, fz = R.

Therefore

∂P

∂y
= fxy,

∂Q

∂x
= fyx,

∂P

∂z
= fxz,

∂R

∂x
= fzx,

∂Q

∂z
= fyz,

∂R

∂y
= fzy.

It then follows by Clairaut’s theorem that

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

10. Let F(x, y) =
−y i + x j
x2 + y2

.

(a) Show that
∂P

∂y
=

∂Q

∂x
.

(b) Show that
∫

C

F · dr is not independent of path. [Hint: Consider the upper and lower halves of

the circle x2 + y2 = 1 from (1, 0) to (−1, 0)]

Proof. (a) Since

P (x, y) =
−y

x2 + y2
, Q(x, y) =

x

x2 + y2
,

∂P

∂y
= − 1

x2 + y2
+

y · 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂Q

∂x
=

1
x2 + y2

− x · 2x

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Thus
∂P

∂y
=

∂Q

∂x
.
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(b) We denote by C1 and C2 the upper and lower halves of the circle x2 + y2 = 1 from (1, 0) to
(−1, 0), respectively. Then

C1 : r(t) = (cos t, sin t), 0 ≤ t ≤ π,

C2 : r(t) = (cos t,− sin t), 0 ≤ t ≤ π.

Thus, ∫
C1

F · dr =
∫

C1

−y

x2 + y2
dx +

x

x2 + y2
dy

=
∫ π

0

(
(− sin t)(− sin t) + (cos t · cos t)

)
dt = π,∫

C2

F · dr =
∫

C2

−y

x2 + y2
dx +

x

x2 + y2
dy

=
∫ π

0

(
(sin t)(− sin t) + (cos t)(− cos t)

)
dt = −π.

Thus
∫

C1

6=
∫

C2

and
∫

C

F · dr is dependant on path. ( Note: This happens because the domain of

definition of F is R2 \ {(0, 0)}, which is not simply connected. )
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