Math 209
 Solutions to assignment 3

Due: 12:00 Noon on Thursday, October 6, 2005.

1. Find the minimum of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the condition $x+2 y+3 z=4$.

Solution. Let's define $g(x, y, z)=x+2 y+3 z$, so the problem is to find the minimum of $f(x, y, z)$ subject to the constraint $g(x, y, z)=4$. We have

$$
\nabla f=\lambda \nabla g \quad \Leftrightarrow \quad(2 x, 2 y, 2 z)=\lambda(1,2,3)
$$

and reading this component by component we obtain $x=\frac{\lambda}{2}, y=\lambda, z=\frac{3 \lambda}{2}$. Plugging this into the constraint we have

$$
\frac{\lambda}{2}+2 \lambda+3\left(\frac{3 \lambda}{2}\right)=4 \quad \Rightarrow \quad \lambda=\frac{4}{7}
$$

Thus $x=\frac{2}{7}, y=\frac{4}{7}, z=\frac{6}{7}$, and $\left(\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right)$ is the only critical point. Now we could use the Hessian matrix of f and see that it is positive definite to justify that this critical point gives the minimum. Alternatively, we can note that the function f is unbounded above (even subject to the restriction) and therefore has no maximum, but it has a minimum since it is bounded below by 0 . Therefore the minimum subject to the given restriction is

$$
f\left(\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right)=\frac{56}{49} \text {. }
$$

2. Find the maximum value of the function $F(x, y, z)=(x+y+z)^{2}$, subject to the constraint given by $x^{2}+2 y^{2}+3 z^{2}=1$.

Solution.

Let's define $g(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$, so the problem is to find the maximum of $F(x, y, z)$ subject to the constraint $g(x, y, z)=1$. We have

$$
\nabla F=\lambda \nabla g \quad \Leftrightarrow \quad(2(x+y+z), 2(x+y+z), 2(x+y+z))=\lambda(2 x, 4 y, 6 z)
$$

Reading this component by component and including the restriction we get the system of equations

$$
\begin{align*}
x+y+z & =\lambda x \tag{A}\\
x+y+z & =2 \lambda y \tag{B}\\
x+y+z & =3 \lambda z \tag{C}\\
x^{2}+2 y^{2}+3 z^{2} & =1 . \tag{D}
\end{align*}
$$

Subtracting (A)-(B) we get $\lambda(x-2 y)=0$, so either $\lambda=0$ or $x=2 y$. But $\lambda=0$ would give $x=y=z=0$, and $f(0,0,0)=0$ is obviously not the maximum. Therefore we work with $x=2 y$.
Subtracting (B)-(C) we get $\lambda(2 y-3 z)=0$, and since we already discarded the case $\lambda=0$ we are left with $z=\frac{2}{3} y$.
Using the results in the two frames into (D) we get

$$
(2 y)^{2}+2 y^{2}+3\left(\frac{2}{3} y\right)^{2}=1 \quad \Rightarrow \quad y= \pm \sqrt{\frac{3}{22}} \quad \Rightarrow \quad x= \pm 2 \sqrt{\frac{3}{22}}, z= \pm \frac{2}{3} \sqrt{\frac{3}{22}} .
$$

It is clear that the maximum of F occurs when x, y, z are all positive, or when they are all negative. Therefore the maximum value is

$$
F\left(2 \sqrt{\frac{3}{22}}, \sqrt{\frac{3}{22}}, \frac{2}{3} \sqrt{\frac{3}{22}}\right)=F\left(-2 \sqrt{\frac{3}{22}},-\sqrt{\frac{3}{22}},-\frac{2}{3} \sqrt{\frac{3}{22}}\right)=\left(\pm \frac{11}{3} \sqrt{\frac{3}{22}}\right)^{2}=\frac{11}{6} .
$$

3. Find the maximum and minimum values of the function

$$
f(x, y, z)=3 x-y-3 z
$$

subject to the constraints

$$
x+y-z=0, \quad x^{2}+2 z^{2}=1
$$

Solution. Let's define $g(x, y, z)=x+y-z$ and $h(x, y, z)=x^{2}+2 z^{2}$, so the problem is to find the maximum of $f(x, y, z)$ subject to the constraints $g(x, y, z)=0$ and $h(x, y, z)=1$. We have

$$
\nabla f=\lambda \nabla g+\mu \nabla h \quad \Leftrightarrow \quad(3,-1,-3)=\lambda(1,1,-1)+\mu(2 x, 0,4 z) .
$$

Reading this component by component and including the restrictions we get the system of equations

$$
\begin{align*}
3 & =\lambda+2 \mu x \tag{A}\\
-1 & =\lambda \tag{B}\\
-3 & =-\lambda+4 \mu z \tag{C}\\
x+y-z & =0 \tag{D}\\
x^{2}+2 z^{2} & =1 . \tag{E}
\end{align*}
$$

Note that (B) already gives $\lambda=-1$. Using this in (A) and (C) we obtain $x=\frac{2}{\mu}$ and $z=-\frac{1}{\mu}$ respectively. Plugging these expressions for x and z into (E) we get

$$
\left(\frac{2}{\mu}\right)^{2}+2\left(-\frac{1}{\mu}\right)^{2}=1 \Rightarrow \mu= \pm \sqrt{6} .
$$

Now, from (D) we have $y=z-x$, so we get

$$
\begin{aligned}
\mu=\sqrt{6} & \Rightarrow \quad x=\frac{2}{\sqrt{6}}, z=-\frac{1}{\sqrt{6}}, y=-\frac{3}{\sqrt{6}} . \\
\mu=-\sqrt{6} \quad & \Rightarrow \quad x=-\frac{2}{\sqrt{6}}, z=\frac{1}{\sqrt{6}}, y=\frac{3}{\sqrt{6}} .
\end{aligned}
$$

Since the intersection of $x+y-z=0$ and $x^{2}+2 z^{2}=1$ is closed and bounded, all we need to do now is evaluate f at the critical points we have found.

$$
\begin{array}{ll}
f\left(\frac{2}{\sqrt{6}},-\frac{3}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)=2 \sqrt{6} & \text { is the maximum value, } \\
f\left(-\frac{2}{\sqrt{6}}, \frac{3}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)=-2 \sqrt{6} & \text { is the minimum value. }
\end{array}
$$

4. Find the extreme values of the function $f(x, y, x)=x y+z^{2}$ on the region described by the inequality $x^{2}+y^{2}+z^{2} \leq 1$. Use Lagrange multipliers to treat the boundary case.

Solution. First we work in the interior: $x^{2}+y^{2}+z^{2}<1$. to find the critical points we set $\nabla f=0$. This yields $x=y=0$, so the only critical point in the interior is $(0,0,0)$. But clearly $f(0,0,0)=0$ is neither a maximum nor a minimum. It is also clear that there are no singular points.
Now we work on the boundary: $x^{2}+y^{2}+z^{2}=1$. Here we can define $g(x, y, z)=x^{2}+y^{2}+z^{2}$, so the problem is to find the extreme values of $f(x, y, z)$ subject to $g(x, y, z)=1$. We have

$$
\nabla f=\lambda \nabla g \quad \Leftrightarrow \quad(y, x, 2 z)=\lambda(2 x, 2 y, 2 z) .
$$

Reading this component by component and including the restriction we get

$$
\begin{align*}
y & =2 \lambda x \tag{A}\\
x & =2 \lambda y \tag{B}\\
2 z & =2 \lambda z \tag{C}\\
x^{2}+y^{2}+z^{2} & =1 . \tag{E}
\end{align*}
$$

Note that (C) implies $2 z(1-\lambda)=0$, so either $z=0$ or $\lambda=1$.
Case 1: $z=0$. Note that (A) and (B) imply $x^{2}=y^{2}$, and then from (D) we get $x^{2}=$ $y^{2}=\frac{1}{2}$. this way we get four points: $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}, 0\right)$.

Case 2: $\lambda=1$. Now (A) and (B) imply $x=y=0$, and then from (D) we get $z= \pm 1$. This way we get the two points $(0,0, \pm 1)$.
Since $x^{2}+y^{2}+z^{2}=1$ is closed and bounded, all we need to do now is evaluate the function at the points we have found:

$$
\begin{aligned}
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) & =f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)=\frac{1}{2} \\
f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) & =f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)=-\frac{1}{2} \quad \text { (this is the global minimum) } \\
f(0,0, \pm 1) & =1 \quad \text { (this is the global maximum). }
\end{aligned}
$$

5. Use Lagrange multipliers to prove that a rectangle with maximum area, that has a given perimeter p, is a square.

Solution. Let the sides of the rectangle be x and y, so the area is $A(x, y)=x y$. The problem is to maximize the function $A(x, y)$ subject to the constraint $g(x, y)=2 x+2 y=$ $p(p>0$ is a fixed number). We have

$$
\nabla A=\lambda \nabla g \quad \Leftrightarrow \quad(y, x)=\lambda(2,2)
$$

Reading this component by component we get

$$
\left\{\begin{array}{ll}
y & =2 \lambda \\
x & =2 \lambda
\end{array} \quad \Rightarrow \quad x=y\right.
$$

so the rectangle with maximum area is a square with side length $\frac{p}{4}$.
6. Evaluate

$$
\int_{0}^{2} \frac{x}{y^{2}+1} d y
$$

Solution. Since we are integrating with respect to y, the letter x in the integrand is treated as a constant. We have

$$
\begin{aligned}
\int_{0}^{2} \frac{x}{y^{2}+1} d y & =x \int_{0}^{2} \frac{1}{y^{2}+1} d y=\left.x \arctan (y)\right|_{y=0} ^{y=2} \\
& =x(\arctan (2)-\arctan (0))=x \arctan (2)
\end{aligned}
$$

7. Calculate the iterated integral

$$
\int_{1}^{2} \int_{0}^{1}(x+y)^{-2} d x d y
$$

Solution. We have

$$
\begin{array}{rl}
\int_{1}^{2} \int_{0}^{1}(x+y)^{-2} & d x d y=\int_{1}^{2}\left(-\left.(x+y)^{-1}\right|_{x=0} ^{x=1}\right) d y \\
& =\int_{1}^{2}\left[-(1+y)^{-1}+y^{-1}\right] d y=-\left.\ln (1+y)\right|_{y=1} ^{y=2}+\left.\ln (y)\right|_{y=1} ^{y=2} \\
& =-(\ln (3)-\ln (2))+\ln (2)-\ln (1) \\
& =-\ln (3)+2 \ln (2)=\ln \left(\frac{4}{3}\right)
\end{array}
$$

8. Calculate the double integral

$$
\iint_{R} x \sin (x+y) d A, \quad \text { where } \quad R=[0, \pi / 6] \times[0, \pi / 3] .
$$

Solution. In this case it is convenient to integrate first with respect to the variable y. We have

$$
\begin{aligned}
\iint_{R} x \sin (x+y) d A & =\int_{0}^{\pi / 6} \int_{0}^{\pi / 3} x \sin (x+y) d y d x \\
& =\int_{0}^{\pi / 6}\left(-\left.x \cos (x+y)\right|_{y=0} ^{y=\pi / 3}\right) d x \\
& =\int_{0}^{\pi / 6}\left(-x \cos \left(x+\frac{\pi}{3}\right)+x \cos (x)\right) d x \\
& =\int_{0}^{\pi / 6} x \cos (x) d x-\int_{0}^{\pi / 6} x \cos \left(x+\frac{\pi}{3}\right) d x
\end{aligned}
$$

These two single integrals can be computed easily using integration by parts, and this way we get

$$
\iint_{R} x \sin (x+y) d A=\frac{\sqrt{3}}{2}-\frac{1}{2}-\frac{\pi}{12} \text {. }
$$

9. Calculate the double integral

$$
\iint_{R} \frac{x}{x^{2}+y^{2}} d A, \quad \text { where } \quad R=[1,2] \times[0,1]
$$

Solution. We will need to use the identity

$$
\begin{equation*}
\int \ln \left(a^{2}+x^{2}\right) d x=x \ln \left(a^{2}+x^{2}\right)-2 x+2 a \arctan \left(\frac{x}{a}\right) . \tag{}
\end{equation*}
$$

which can be obtained using integration by parts.
Integrating first with respect to the variable x, we have

$$
\begin{aligned}
\iint_{R} \frac{x}{x^{2}+y^{2}} d A= & \int_{0}^{1} \int_{1}^{2} \frac{x}{x^{2}+y^{2}} d x d y=\int_{0}^{1} \frac{1}{2} \int_{1}^{2} \frac{2 x}{x^{2}+y^{2}} d x d y \\
= & \frac{1}{2} \int_{0}^{1}\left(\left.\ln \left(x^{2}+y^{2}\right)\right|_{x=1} ^{x=2}\right) d y \\
= & \frac{1}{2}\left(\int_{0}^{1} \ln \left(4+y^{2}\right) d y-\int_{0}^{1} \ln \left(1+y^{2}\right) d y\right) \\
= & \frac{1}{2}\left(y \ln \left(4+y^{2}\right)-2 y+\left.4 \arctan \left(\frac{y}{2}\right)\right|_{y=0} ^{y=1}\right) \\
& \quad-\frac{1}{2}\left(y \ln \left(1+y^{2}\right)-2 y+\left.2 \arctan (y)\right|_{y=0} ^{y=1}\right)
\end{aligned}
$$

(here we have used the identity $\left({ }^{*}\right)$)

$$
=\cdots=\frac{1}{2} \ln \left(\frac{5}{2}\right)+2 \arctan \left(\frac{1}{2}\right)-\arctan (1) .
$$

10. Find the volume of the solid that lies under the hyperbolic paraboloid $z=y^{2}-x^{2}$, and above the square $R=[-1,1] \times[1,3]$.

Solution. We can see that the function $f(x, y)=y^{2}-x^{2}$ is nonnegative over the given rectangle. Therefore, calling S the solid we have

$$
\begin{aligned}
\operatorname{Vol}(S) & =\iint_{R}\left(y^{2}-x^{2}\right) d A=\int_{1}^{3} \int_{-1}^{1}\left(y^{2}-x^{2}\right) d x d y \\
& =\int_{1}^{3}\left(y^{2} x-\left.\frac{x^{3}}{3}\right|_{x=-1} ^{x=1}\right) d y \\
& =\int_{1}^{3} 2\left(y^{2}-\frac{1}{3}\right) d y=\cdots=16
\end{aligned}
$$

Thus $\operatorname{Vol}(S)=16$ cubic units.

