
Math 209
Solutions to assignment 3

Due: 12:00 Noon on Thursday, October 6, 2005.

1. Find the minimum of the function f(x, y, z) = x2 + y2 + z2 subject to the condition
x + 2y + 3z = 4.

Solution. Let’s define g(x, y, z) = x + 2y + 3z, so the problem is to find the minimum
of f(x, y, z) subject to the constraint g(x, y, z) = 4. We have

∇f = λ∇g ⇔ (2x, 2y, 2z) = λ(1, 2, 3);

and reading this component by component we obtain x = λ
2
, y = λ, z = 3λ

2
. Plugging this

into the constraint we have

λ

2
+ 2λ + 3

(
3λ

2

)
= 4 ⇒ λ =

4

7
.

Thus x = 2
7
, y = 4

7
, z = 6

7
, and (2

7
, 4

7
, 6

7
) is the only critical point. Now we could use the

Hessian matrix of f and see that it is positive definite to justify that this critical point
gives the minimum. Alternatively, we can note that the function f is unbounded above
(even subject to the restriction) and therefore has no maximum, but it has a minimum
since it is bounded below by 0. Therefore the minimum subject to the given restriction is

f
(

2
7
, 4

7
, 6

7

)
= 56

49
.

2. Find the maximum value of the function F (x, y, z) = (x+y+z)2, subject to the constraint
given by x2 + 2y2 + 3z2 = 1.

Solution.

Let’s define g(x, y, z) = x2 +2y2 +3z2, so the problem is to find the maximum of F (x, y, z)
subject to the constraint g(x, y, z) = 1. We have

∇F = λ∇g ⇔ (2(x + y + z), 2(x + y + z), 2(x + y + z)) = λ(2x, 4y, 6z).

Reading this component by component and including the restriction we get the system of
equations

x + y + z = λx (A)

x + y + z = 2λy (B)

x + y + z = 3λz (C)

x2 + 2y2 + 3z2 = 1. (D)



Subtracting (A)–(B) we get λ(x − 2y) = 0, so either λ = 0 or x = 2y. But λ = 0 would
give x = y = z = 0, and f(0, 0, 0) = 0 is obviously not the maximum. Therefore we work
with x = 2y .

Subtracting (B)–(C) we get λ(2y− 3z) = 0, and since we already discarded the case λ = 0

we are left with z = 2
3
y .

Using the results in the two frames into (D) we get

(2y)2 + 2y2 + 3

(
2

3
y

)2

= 1 ⇒ y = ±
√

3

22
⇒ x = ±2

√
3

22
, z = ±2

3

√
3

22
.

It is clear that the maximum of F occurs when x, y, z are all positive, or when they are
all negative. Therefore the maximum value is

F

(
2

√
3

22
,

√
3

22
,
2

3

√
3

22

)
= F

(
−2

√
3

22
,−

√
3

22
,−2

3

√
3

22

)
=

(
±11

3

√
3

22

)2

=
11

6
.

3. Find the maximum and minimum values of the function

f(x, y, z) = 3x− y − 3z,

subject to the constraints

x + y − z = 0, x2 + 2z2 = 1.

Solution. Let’s define g(x, y, z) = x+y−z and h(x, y, z) = x2+2z2, so the problem is to
find the maximum of f(x, y, z) subject to the constraints g(x, y, z) = 0 and h(x, y, z) = 1.
We have

∇f = λ∇g + µ∇h ⇔ (3,−1,−3) = λ(1, 1,−1) + µ(2x, 0, 4z).

Reading this component by component and including the restrictions we get the system
of equations

3 = λ + 2µx (A)

−1 = λ (B)

−3 = −λ + 4µz (C)

x + y − z = 0 (D)

x2 + 2z2 = 1. (E)



Note that (B) already gives λ = −1 . Using this in (A) and (C) we obtain x = 2
µ

and

z = − 1
µ

respectively. Plugging these expressions for x and z into (E) we get

(
2

µ

)2

+ 2

(
− 1

µ

)2

= 1 ⇒ µ = ±√6 .

Now, from (D) we have y = z − x, so we get

µ =
√

6 ⇒ x =
2√
6
, z = − 1√

6
, y = − 3√

6
.

µ = −
√

6 ⇒ x = − 2√
6
, z =

1√
6
, y =

3√
6
.

Since the intersection of x+ y− z = 0 and x2 +2z2 = 1 is closed and bounded, all we need
to do now is evaluate f at the critical points we have found.

f

(
2√
6
,− 3√

6
,− 1√

6

)
= 2

√
6 is the maximum value,

f

(
− 2√

6
,

3√
6
,

1√
6

)
= −2

√
6 is the minimum value.

4. Find the extreme values of the function f(x, y, x) = xy + z2 on the region described by
the inequality x2 + y2 + z2 ≤ 1. Use Lagrange multipliers to treat the boundary case.

Solution. First we work in the interior: x2 + y2 + z2 < 1. to find the critical points we
set ∇f = 0. This yields x = y = 0, so the only critical point in the interior is (0, 0, 0).
But clearly f(0, 0, 0) = 0 is neither a maximum nor a minimum. It is also clear that there
are no singular points.

Now we work on the boundary: x2+y2+z2 = 1. Here we can define g(x, y, z) = x2+y2+z2,
so the problem is to find the extreme values of f(x, y, z) subject to g(x, y, z) = 1. We have

∇f = λ∇g ⇔ (y, x, 2z) = λ(2x, 2y, 2z).

Reading this component by component and including the restriction we get

y = 2λx (A)

x = 2λy (B)

2z = 2λz (C)

x2 + y2 + z2 = 1. (E)

Note that (C) implies 2z(1− λ) = 0, so either z = 0 or λ = 1.

Case 1: z = 0. Note that (A) and (B) imply x2 = y2, and then from (D) we get x2 =
y2 = 1

2
. this way we get four points: (± 1√

2
,± 1√

2
, 0).



Case 2: λ = 1. Now (A) and (B) imply x = y = 0, and then from (D) we get z = ±1.
This way we get the two points (0, 0,±1).

Since x2+y2+z2 = 1 is closed and bounded, all we need to do now is evaluate the function
at the points we have found:

f

(
1√
2
,

1√
2
, 0

)
= f

(
− 1√

2
,− 1√

2
, 0

)
=

1

2

f

(
1√
2
,− 1√

2
, 0

)
= f

(
− 1√

2
,

1√
2
, 0

)
= −1

2
(this is the global minimum)

f(0, 0,±1) = 1 (this is the global maximum).

5. Use Lagrange multipliers to prove that a rectangle with maximum area, that has a given
perimeter p, is a square.

Solution. Let the sides of the rectangle be x and y, so the area is A(x, y) = xy. The
problem is to maximize the function A(x, y) subject to the constraint g(x, y) = 2x + 2y =
p (p > 0 is a fixed number). We have

∇A = λ∇g ⇔ (y, x) = λ(2, 2).

Reading this component by component we get

{
y = 2λ

x = 2λ
⇒ x = y

so the rectangle with maximum area is a square with side length p
4
.

6. Evaluate ∫ 2

0

x

y2 + 1
dy.

Solution. Since we are integrating with respect to y, the letter x in the integrand is
treated as a constant. We have

∫ 2

0

x

y2 + 1
dy = x

∫ 2

0

1

y2 + 1
dy = x arctan(y)|y=2

y=0

= x(arctan(2)− arctan(0)) = x arctan(2) .



7. Calculate the iterated integral

∫ 2

1

∫ 1

0

(x + y)−2dxdy.

Solution. We have
∫ 2

1

∫ 1

0

(x + y)−2dxdy =

∫ 2

1

(
−(x + y)−1

∣∣x=1

x=0

)
dy

=

∫ 2

1

[−(1 + y)−1 + y−1
]
dy = − ln(1 + y)|y=2

y=1 + ln(y)|y=2
y=1

= −(ln(3)− ln(2)) + ln(2)− ln(1)

= − ln(3) + 2 ln(2) = ln
(

4
3

)
.

8. Calculate the double integral

∫ ∫

R

x sin(x + y) dA, where R = [0, π/6]× [0, π/3].

Solution. In this case it is convenient to integrate first with respect to the variable y.
We have

∫ ∫

R

x sin(x + y) dA =

∫ π/6

0

∫ π/3

0

x sin(x + y) dy dx

=

∫ π/6

0

(
−x cos(x + y)|y=π/3

y=0

)
dx

=

∫ π/6

0

(
−x cos(x +

π

3
) + x cos(x)

)
dx

=

∫ π/6

0

x cos(x) dx−
∫ π/6

0

x cos(x +
π

3
) dx.

These two single integrals can be computed easily using integration by parts, and this way
we get ∫∫

R
x sin(x + y) dA =

√
3

2
− 1

2
− π

12
.

9. Calculate the double integral

∫ ∫

R

x

x2 + y2
dA, where R = [1, 2]× [0, 1].



Solution. We will need to use the identity

∫
ln(a2 + x2) dx = x ln(a2 + x2)− 2x + 2a arctan

(x

a

)
. (*)

which can be obtained using integration by parts.

Integrating first with respect to the variable x, we have

∫ ∫

R

x

x2 + y2
dA =

∫ 1

0

∫ 2

1

x

x2 + y2
dx dy =

∫ 1

0

1

2

∫ 2

1

2x

x2 + y2
dx dy

=
1

2

∫ 1

0

(
ln(x2 + y2)

∣∣x=2

x=1

)
dy

=
1

2

(∫ 1

0

ln(4 + y2) dy −
∫ 1

0

ln(1 + y2) dy

)

=
1

2

(
y ln(4 + y2)− 2y + 4 arctan

(y

2

)∣∣∣
y=1

y=0

)

− 1

2

(
y ln(1 + y2)− 2y + 2 arctan(y)

∣∣y=1

y=0

)

(here we have used the identity (*))

= · · · = 1
2
ln

(
5
2

)
+ 2 arctan

(
1
2

)− arctan(1) .

10. Find the volume of the solid that lies under the hyperbolic paraboloid z = y2 − x2, and
above the square R = [−1, 1]× [1, 3].

Solution. We can see that the function f(x, y) = y2 − x2 is nonnegative over the given
rectangle. Therefore, calling S the solid we have

Vol(S) =

∫ ∫

R

(y2 − x2) dA =

∫ 3

1

∫ 1

−1

(y2 − x2) dx dy

=

∫ 3

1

(
y2x− x3

3

∣∣∣∣
x=1

x=−1

)
dy

=

∫ 3

1

2

(
y2 − 1

3

)
dy = · · · = 16.

Thus Vol(S) = 16 cubic units.


