Math 209
 Assignment 2 - Solutions

1. Let $R=\ln \left(u^{2}+v^{2}+w^{2}\right), u=x+2 y, v=2 x-y$, and $w=2 x y$. Use the Chain Rule to find $\frac{\partial R}{\partial x}$ and $\frac{\partial R}{\partial y}$ when $x=y=1$.

Solution:

The Chain Rule gives

$$
\begin{gathered}
\frac{\partial R}{\partial x}=\frac{\partial R}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial R}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial R}{\partial w} \frac{\partial w}{\partial x} \\
=\frac{2 u}{u^{2}+v^{2}+w^{2}} \times 1+\frac{2 v}{u^{2}+v^{2}+w^{2}} \times 2+\frac{2 w}{u^{2}+v^{2}+w^{2}} \times(2 y) .
\end{gathered}
$$

When $x=y=1$, we have $u=3, v=1$, and $w=2$, so

$$
\begin{gathered}
\frac{\partial R}{\partial x}=\frac{6}{14} \times 1+\frac{2}{14} \times 2+\frac{4}{14} \times 2=\frac{18}{14}=\frac{9}{7} . \\
\frac{\partial R}{\partial y}=\frac{\partial R}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial R}{\partial v} \frac{\partial v}{\partial y}+\frac{\partial R}{\partial w} \frac{\partial w}{\partial y} \\
=\frac{2 u}{u^{2}+v^{2}+w^{2}} \times 2+\frac{2 v}{u^{2}+v^{2}+w^{2}} \times(-1)+\frac{2 w}{u^{2}+v^{2}+w^{2}} \times(2 x) .
\end{gathered}
$$

When $x=y=1$, we have $u=3, v=1$, and $w=2$, so

$$
\frac{\partial R}{\partial x}=\frac{6}{14} \times 2+\frac{2}{14} \times(-1)+\frac{4}{14} \times 2=\frac{18}{14}=\frac{9}{7} .
$$

2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x y z=\sin (x+y+z)$.

Solution:

Let $F(x, y, z)=x y z-\sin (x+y+z)=0$. Then, we have

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}=-\frac{y z-\cos (x+y+z)}{x y-\cos (x+y+z)} \\
& \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}=-\frac{x z-\cos (x+y+z)}{x y-\cos (x+y+z)} .
\end{aligned}
$$

3. Let f and g be two differentiable real valued functions. Show that any function of the form $z=f(x+a t)+g(x-a t)$ is a solution of the wave equation $\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$.

Solution:

Let $u=x+a t$ and $v=x-a t$. Then $z=f(u)+g(v)$ and the Chain Rule gives

$$
\frac{\partial z}{\partial x}=\frac{d f}{d u} \frac{\partial u}{\partial x}+\frac{d g}{d v} \frac{\partial u}{\partial x}=\frac{d f}{d u}+\frac{d g}{d v}
$$

Thus

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{d f}{d u}+\frac{d g}{d v}\right)=\frac{d^{2} f}{d u^{2}}+\frac{d^{2} g}{d v^{2}} . \tag{1}
\end{equation*}
$$

Similarly

$$
\frac{\partial z}{\partial t}=\frac{d f}{d u} \frac{\partial u}{\partial t}+\frac{d g}{d v} \frac{\partial v}{\partial t}=a \frac{d f}{d u}+a \frac{d g}{d v} .
$$

Thus

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial t^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial t}\right)=\frac{\partial}{\partial x}\left(a \frac{d f}{d u}+a \frac{d g}{d v}\right)=a^{2} \frac{d^{2} f}{d u^{2}}+a^{2} \frac{d^{2} g}{d v^{2}}=a^{2}\left(\frac{d^{2} f}{d u^{2}}+\frac{d^{2} g}{d v^{2}}\right) . \tag{2}
\end{equation*}
$$

From Equations (1) and (2) we get

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

4. A function f is called homogeneous of degree \mathbf{n} if it is satisfies the equation $f(t x, t y)=$ $t^{n} f(x, y)$ for all t, where n is a positive integer. Show that if f is homogeneous of degree n, then

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

[Hint: Use the Chain Rule to differentiate $f(t x, t y)$ with respect t.]

Solution:

Let $u=t x$ and $v=t y$. Then

$$
\frac{d}{d t}(f(u, v))=n t^{n-1} f(x, y)
$$

The Chain Rule gives

$$
\frac{\partial f}{\partial u} \frac{d u}{d t}+\frac{\partial f}{\partial v} \frac{d v}{d t}=n t^{n-1} f(x, y)
$$

Therefore

$$
\begin{equation*}
x \frac{\partial f}{\partial u}+y \frac{\partial f}{\partial v}=n t^{n-1} f(x, y) . \tag{3}
\end{equation*}
$$

Setting $t=1$ in the Equation (3):

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

5. Find the directional derivative of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(1,2,-2)$ in the direction of vector $\mathbf{v}=\langle-6,6,-3\rangle$.

Solution:

We first compute the gradient vector at $(1,2,-2)$.

$$
\begin{gathered}
\nabla f(x, y, z)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\rangle \\
\nabla f(1,2,-2)=\left\langle\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}\right\rangle .
\end{gathered}
$$

Note that \mathbf{v} is not unit vector, but since $|\mathbf{v}|=9$, the unit vector in the direction of \mathbf{v} is

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\left\langle\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right\rangle .
$$

Therefore

$$
D_{\mathbf{u}} f(1,2,-2)=\nabla f(1,2,-2) \cdot \mathbf{u}=\frac{2}{3}
$$

6. The temperature at a point (x, y, z) on the surface of a metal is $T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}$ where T is measured in degree Celsius and x, y, z in meters.
(a) In which direction does the temperature increase fastest at the point $P(2,-1,2)$?
(b) What is the maximum rate of change at $P(2,-1,2)$?

Solution:

We first compute the gradient vector:

$$
\begin{gathered}
\nabla T(x, y, z)=\left\langle T_{x}, T_{y}, T_{z}\right\rangle=-e^{-x^{2}-3 y^{2}-9 z^{2}}\langle 400 x, 1200 y, 3600 z\rangle \\
\nabla T(2,-1,2)=-400 e^{-43}\langle 2,-3,18\rangle
\end{gathered}
$$

The temperature increases in the direction of the gradient vector

$$
\nabla T(2,-1,2)=-400 e^{-43}\langle 2,-3,18\rangle
$$

The maximum rate of change is

$$
\left|-400 e^{-25}\langle 2,-3,18\rangle\right|=400 e^{-43} \sqrt{337} .
$$

7. Find the points on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ where the tangent plane is parallel to the plane $3 x-2 y+3 z=1$.

Solution:

Let $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$. The normal vector of the plane $3 x-2 y+3 z=1$ is $\langle 3,-2,3\rangle$. The normal vector for tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)$ on the ellipsoid is $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0}, 4 y_{0}, 6 z_{0}\right\rangle$. Since the tangent plane is parallel to the given plane, $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0}, 4 y_{0}, 6 z_{0}\right\rangle=c\langle 3,-2,3\rangle$ or $\left\langle x_{0}, 2 y_{0}, 3 z_{0}\right\rangle=k\langle 3,-2,3\rangle$. Thus $x_{0}=$ $3 k, y_{0}=-k$ and $z_{0}=k$. But $x_{0}^{2}+2 y_{0}^{2}+3 z_{0}^{2}=1$ or $(9+2+3) k^{2}=1$,so $k= \pm \frac{\sqrt{14}}{14}$ and there are two such point $\left(\pm \frac{\sqrt{14}}{14}, \pm \frac{\sqrt{14}}{14}, \pm \frac{\sqrt{14}}{14}\right)$.
8. Find the local maximum and minimum values and saddle point(s) of the function

$$
f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2 .
$$

Solution:

The first order partial derivatives are

$$
f_{x}=6 x y-6 x, \quad f_{y}=3 x^{2}+3 y^{2}-6 y
$$

So to find the critical points we need to solve the equations $f_{x}=0$ and $f_{y}=0 . f_{x}=0$ implies $x=0$ or $y=1$ and when $x=0, f_{y}=0$ implies $y=0$ or $y=2$; when $y=1, f_{y}=0$ implies $x^{2}=1$ or $x= \pm 1$. Thus the critical points are $(0,0),(0,2),(\pm 1,1)$.
Now $f_{x x}=6 y-6, f_{y y}=6 y-6$ and $f_{x y}=6 x$. So $D=f_{x x} f_{y y}-f_{x y}^{2}=(6 y-6)^{2}-36 x^{2}$.

Critical point	Value of f	$f_{x x}$	D	Conclusion
$(0,0)$	2	-6	36	local maximum
$(0,2)$	-2	6	36	local minimum
$(1,1)$	0	0	-36	saddle point
$(-1,1)$	0	0	-36	saddle point

9. Find the points on surface $x^{2} y^{2} z=1$ that are closest to the origin.

Solution:

The distance from any point (x, y, z) to the origin is

$$
d=\sqrt{x^{2}+y^{2}+z^{2}}
$$

but if (x, y, z) lies on the surface $x^{2} y^{2} z=1$, then $z=\frac{1}{x^{2} y^{2}}$ and so we have

$$
d=\sqrt{x^{2}+y^{2}+x^{-4} y^{-4}}
$$

We can minimize d by minimizing the simpler expression

$$
d^{2}=x^{2}+y^{2}+x^{-4} y^{-4}=f(x, y)
$$

$f_{x}=2 x-\frac{4}{x^{5} y^{4}}, f_{y}=2 y-\frac{4}{x^{4} y^{5}}$, so the critical points occur when $2 x=\frac{4}{x^{5} y^{4}}$ and $2 y=\frac{4}{x^{4} y^{5}}$ or $x^{6} y^{4}=x^{4} y^{6}$ so, $x^{2}=y^{2}$ and $x^{10}=2 \Rightarrow x= \pm 2^{\frac{1}{10}}, y= \pm 2^{\frac{1}{10}}$. The four critical points $\left(\pm 2^{\frac{1}{10}}, \pm 2^{\frac{1}{10}}\right)$. Thus the points on the surface closes to origin are $\left(\pm 2^{\frac{1}{10}}, \pm 2^{\frac{1}{10}}\right)$. There is no maximum since the surface is infinite in extent.
10. Find the extreme values of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the region

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}
$$

Solution:

We first need to find the critical points. These occur when

$$
f_{x}=4 x-4=0, \quad f_{y}=6 y=0
$$

so the only critical point of f is $(1,0)$ and it lies in the region $x^{2}+y^{2} \leq 16$.
On the circle $x^{2}+y^{2}=16$, we have $y^{2}=16-x^{2}$ and

$$
\begin{gathered}
g(x)=f\left(x, \sqrt{16-x^{2}}\right)=2 x^{2}+3\left(16-x^{2}\right)-4 x-5=-x^{2}-4 x+43 . \\
g^{\prime}(x)=0 \Rightarrow-2 x-4=0 \Rightarrow x=-2 \\
y^{2}=16-x^{2}=16-4=12 \Rightarrow y= \pm 2 \sqrt{3} .
\end{gathered}
$$

Now $f(1,0)=-7$ and $f(-2, \pm 2 \sqrt{3})=47$. Thus the maximum value of $f(x, y)$ on the disc $x^{2}+y^{2} \leq 16$ is $f(-2, \pm 2 \sqrt{3})=47$, and the minimum value is $f(1,0)=-7$.

