
Math 209
Assignment 2 — Solutions

1. Let R = ln(u2 + v2 + w2), u = x + 2y, v = 2x − y, and w = 2xy. Use the Chain Rule to
find ∂R

∂x
and ∂R

∂y
when x = y = 1 .

Solution:

The Chain Rule gives
∂R

∂x
=

∂R

∂u

∂u

∂x
+

∂R

∂v

∂v

∂x
+

∂R

∂w

∂w

∂x

=
2u

u2 + v2 + w2
× 1 +

2v

u2 + v2 + w2
× 2 +

2w

u2 + v2 + w2
× (2y).

When x = y = 1, we have u = 3, v = 1, and w = 2, so

∂R

∂x
=

6

14
× 1 +

2

14
× 2 +

4

14
× 2 =

18

14
=

9

7
.

∂R

∂y
=

∂R

∂u

∂u

∂y
+

∂R

∂v

∂v

∂y
+

∂R

∂w

∂w

∂y

=
2u

u2 + v2 + w2
× 2 +

2v

u2 + v2 + w2
× (−1) +

2w

u2 + v2 + w2
× (2x).

When x = y = 1, we have u = 3, v = 1, and w = 2, so

∂R

∂x
=

6

14
× 2 +

2

14
× (−1) +

4

14
× 2 =

18

14
=

9

7
.

2. Find ∂z
∂x

and ∂z
∂y

if xyz = sin(x + y + z).

Solution:

Let F (x, y, z) = xyz − sin(x + y + z) = 0. Then, we have

∂z

∂x
= −

∂F
∂x
∂F
∂z

= −yz − cos(x + y + z)

xy − cos(x + y + z)
,

∂z

∂y
= −

∂F
∂y

∂F
∂z

= −xz − cos(x + y + z)

xy − cos(x + y + z)
.



3. Let f and g be two differentiable real valued functions. Show that any function of the
form z = f(x + at) + g(x− at) is a solution of the wave equation ∂2z

∂t2
= a2 ∂2z

∂x2 .

Solution:

Let u = x + at and v = x− at. Then z = f(u) + g(v) and the Chain Rule gives

∂z

∂x
=

df

du

∂u

∂x
+

dg

dv

∂u

∂x
=

df

du
+

dg

dv
.

Thus
∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

∂

∂x

(
df

du
+

dg

dv

)
=

d2f

du2
+

d2g

dv2
. (1)

Similarly
∂z

∂t
=

df

du

∂u

∂t
+

dg

dv

∂v

∂t
= a

df

du
+ a

dg

dv
.

Thus

∂2z

∂t2
=

∂

∂x

(
∂z

∂t

)
=

∂

∂x

(
a

df

du
+ a

dg

dv

)
= a2d2f

du2
+ a2 d2g

dv2
= a2

(
d2f

du2
+

d2g

dv2

)
. (2)

From Equations (1) and (2) we get

∂2z

∂t2
= a2 ∂2z

∂x2
.

4. A function f is called homogeneous of degree n if it is satisfies the equation f(tx, ty) =
tnf(x, y) for all t, where n is a positive integer. Show that if f is homogeneous of degree
n, then

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y)

[Hint: Use the Chain Rule to differentiate f(tx, ty) with respect t.]

Solution:

Let u = tx and v = ty. Then

d

dt
(f(u, v)) = ntn−1f(x, y) .

The Chain Rule gives
∂f

∂u

du

dt
+

∂f

∂v

dv

dt
= ntn−1f(x, y) .

Therefore

x
∂f

∂u
+ y

∂f

∂v
= ntn−1f(x, y) . (3)

Setting t = 1 in the Equation (3):

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y) .



5. Find the directional derivative of the function f(x, y, z) =
√

x2 + y2 + z2 at the point
(1, 2,−2) in the direction of vector v = 〈−6, 6,−3〉.

Solution:

We first compute the gradient vector at (1, 2,−2).

∇f(x, y, z) =

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉

∇f(1, 2,−2) =

〈
1

3
,
2

3
,
−2

3

〉
.

Note that v is not unit vector, but since |v| = 9, the unit vector in the direction of v is

u =
v

|v|
=

〈
−2

3
,

2

3
,
−1

3

〉
.

Therefore

Duf(1, 2,−2) = ∇f(1, 2,−2) · u =
2

3
.

6. The temperature at a point (x, y, z) on the surface of a metal is T (x, y, z) = 200e−x2−3y2−9z2

where T is measured in degree Celsius and x, y, z in meters.

(a) In which direction does the temperature increase fastest at the point P (2,−1, 2)?

(b) What is the maximum rate of change at P (2,−1, 2)?

Solution:

We first compute the gradient vector:

∇T (x, y, z) = 〈Tx, Ty, Tz〉 = −e−x2−3y2−9z2 〈400x, 1200y, 3600z〉

∇T (2,−1, 2) = −400e−43 〈2,−3, 18〉 .

The temperature increases in the direction of the gradient vector

∇T (2,−1, 2) = −400e−43 〈2,−3, 18〉 .

The maximum rate of change is∣∣−400e−25 〈2,−3, 18〉
∣∣ = 400e−43

√
337 .

7. Find the points on the ellipsoid x2 + 2y2 + 3z2 = 1 where the tangent plane is parallel to
the plane 3x− 2y + 3z = 1.



Solution:

Let f(x, y, z) = x2 + 2y2 + 3z2. The normal vector of the plane 3x − 2y + 3z = 1 is
〈3,−2, 3〉 . The normal vector for tangent plane at the point (x0, y0, z0) on the ellipsoid
is ∇f(x0, y0, z0) = 〈2x0, 4y0, 6z0〉. Since the tangent plane is parallel to the given plane,
∇f(x0, y0, z0) = 〈2x0, 4y0, 6z0〉 = c 〈3,−2, 3〉 or 〈x0, 2y0, 3z0〉 = k 〈3,−2, 3〉. Thus x0 =

3k, y0 = −k and z0 = k. But x2
0 + 2y2

0 + 3z2
0 = 1 or (9 + 2 + 3)k2 = 1,so k = ±

√
14

14
and

there are two such point (±
√

14
14

,±
√

14
14

,±
√

14
14

) .

8. Find the local maximum and minimum values and saddle point(s) of the function

f(x, y) = 3x2y + y3 − 3x2 − 3y2 + 2.

Solution:

The first order partial derivatives are

fx = 6xy − 6x, fy = 3x2 + 3y2 − 6y .

So to find the critical points we need to solve the equations fx = 0 and fy = 0. fx = 0
implies x = 0 or y = 1 and when x = 0, fy = 0 implies y = 0 or y = 2; when y = 1, fy = 0
implies x2 = 1 or x = ±1. Thus the critical points are (0, 0), (0, 2), (±1, 1).

Now fxx = 6y − 6, fyy = 6y − 6 and fxy = 6x. So D = fxxfyy − f 2
xy = (6y − 6)2 − 36x2.

Critical point Value of f fxx D Conclusion
(0, 0) 2 -6 36 local maximum
(0, 2) -2 6 36 local minimum
(1, 1) 0 0 -36 saddle point

(−1, 1) 0 0 -36 saddle point

9. Find the points on surface x2y2z = 1 that are closest to the origin.

Solution:

The distance from any point (x, y, z) to the origin is

d =
√

x2 + y2 + z2

but if (x, y, z) lies on the surface x2y2z = 1, then z = 1
x2y2 and so we have

d =
√

x2 + y2 + x−4y−4 .

We can minimize d by minimizing the simpler expression

d2 = x2 + y2 + x−4y−4 = f(x, y) .

fx = 2x− 4
x5y4 , fy = 2y − 4

x4y5 , so the critical points occur when 2x = 4
x5y4 and 2y = 4

x4y5

or x6y4 = x4y6 so, x2 = y2 and x10 = 2 ⇒ x = ±2
1
10 , y = ±2

1
10 . The four critical points

(±2
1
10 ,±2

1
10 ). Thus the points on the surface closes to origin are (±2

1
10 ,±2

1
10 ). There is

no maximum since the surface is infinite in extent.



10. Find the extreme values of f(x, y) = 2x2 + 3y2 − 4x− 5 on the region

D = {(x, y)| x2 + y2 ≤ 16}.

Solution:

We first need to find the critical points. These occur when

fx = 4x− 4 = 0, fy = 6y = 0

so the only critical point of f is (1, 0) and it lies in the region x2 + y2 ≤ 16.

On the circle x2 + y2 = 16, we have y2 = 16− x2 and

g(x) = f(x,
√

16− x2) = 2x2 + 3(16− x2)− 4x− 5 = −x2 − 4x + 43 .

g
′
(x) = 0 ⇒ −2x− 4 = 0 ⇒ x = −2

y2 = 16− x2 = 16− 4 = 12 ⇒ y = ±2
√

3 .

Now f(1, 0) = −7 and f(−2,±2
√

3) = 47. Thus the maximum value of f(x, y) on the disc
x2 + y2 ≤ 16 is f(−2,±2

√
3) = 47, and the minimum value is f(1, 0) = −7.


