. Math 209 )
Assignment 2 — Solutions

1. Let R =1In(u®+v* +w?), u =2+ 2y, v =22 —y, and w = 2xy. Use the Chain Rule to

ﬁndg—];and%—gwhenx:yzl.

Solution:

The Chain Rule gives
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When z =y =1, we have u =3, v =1, and w = 2, so
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When x =y =1, we have u = 3, v =1, and w = 2, so

x (2z).
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2. Find £ and g—z if xyz = sin(zx + y + z2).

Solution:
Let F(z,y,2) = zyz —sin(z + y + z) = 0. Then, we have

0z _%:5 _yz—cos(z+y+2)
oz . zy —cos(zx+y+z2)’

0z %—5 rz — cos(x +y+ 2)

3_y__%—f __:Ey—cos(a:—i-y%—z)'




3. Let f and g be two differentiable real valued functions. Show that any function of the

form z = f(z + at) + g(x — at) is a solution of the wave equation % = a? gii.

Solution:
Let w = 4+ at and v = x — at. Then z = f(u) + ¢g(v) and the Chain Rule gives
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From Equations (1) and (2) we get
Pz 0%

or "o

4. A function f is called homogeneous of degree n if it is satisfies the equation f(tz,ty) =
t" f(x,y) for all t, where n is a positive integer. Show that if f is homogeneous of degree

n, then
of 0 f

[Hint: Use the Chain Rule to differentiate f(tx, ty) with respect .|

Solution:

Let u = tx and v = ty. Then

d _ n—1
= (f(w,0) = nt" f ().
The Chain Rule gives
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Therefore o7 o/
—J A n—1
To-tyge =0t f(z.y). (3)

Setting t = 1 in the Equation (3):



5. Find the directional derivative of the function f(z,y,z) = /22 + y? + 2% at the point
(1,2,—2) in the direction of vector v = (—6,6, —3).

Solution:

We first compute the gradient vector at (1,2, —2).

Viz,y,2) . d -~
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Note that v is not unit vector, but since |v| = 9, the unit vector in the direction of v is
v -2 2 -1
u=—= =y 5y o .
v 3 73 3

Daf(1,2,-2) = Vf(1,2,-2) -u = g

Therefore

. The temperature at a point (z, y, z) on the surface of a metal is T'(x,y, z) = 200" —3y* 92"
where 7' is measured in degree Celsius and z, y, z in meters.

(a) In which direction does the temperature increase fastest at the point P(2,—1,2)7

(b) What is the maximum rate of change at P(2,—1,2)?

Solution:

We first compute the gradient vector:
VT(z,y,2) = (Th, T, T.) = —e~* 3" =9" (400, 1200y, 3600z)

VT(2,—1,2) = —400e * (2, -3, 18) .

The temperature increases in the direction of the gradient vector
VT(2,-1,2) = —400e ** (2, —-3,18) .
The maximum rate of change is

| —400e™2° (2, =3, 18)| = 400e~**v/337 .

. Find the points on the ellipsoid 2% 4 2y + 322 = 1 where the tangent plane is parallel to
the plane 3x — 2y + 32 = 1.



Solution:

Let f(x,y,z) = 2® 4+ 2y* + 322, The normal vector of the plane 3z — 2y + 3z = 1 is
(3,—2,3) . The normal vector for tangent plane at the point (zo, o, 2z0) on the ellipsoid
is Vf(xo,y0,20) = (20, 4yo,620). Since the tangent plane is parallel to the given plane,
V f(xo, Y0, 20) = (2x0,4yo, 620) = ¢(3,—2,3) or (xg,2yo,320) = k(3,—2,3). Thus zy =
3k, yo = —k and 2y = k. But 22 +2y2 + 322 = Lor (9+2+3)k> = 1,50 k = +¥11 and

VI 4 VA1 YT
+Y1 4V VI

there are two such point (£, =%,

. Find the local maximum and minimum values and saddle point(s) of the function

fla,y) =32y +y° — 32% = 3y* + 2.

Solution:

The first order partial derivatives are
fe = 6xy — 6, f, = 32>+ 3y* — 6y.

So to find the critical points we need to solve the equations f, = 0 and f, = 0. f, =0
implies =0 or y = 1 and when 2 =0, f, = 0 impliesy =0 ory = 2; wheny =1, f, =0
implies 2 = 1 or = +1. Thus the critical points are (0,0), (0,2), (£1,1).

Now fpr =6y — 6, fy, =6y — 6 and f,, = 6x. So D = foufyy, — f2, = (6y — 6)? — 3622

Ty

Critical point | Value of f | fo. | D Conclusion
(0,0) 2 -6 | 36 | local maximum
(0,2) -2 6 | 36 | local minimum
(1,1) 0 0 |-36| saddle point

(—1,1) 0 0 |-36| saddle point

. Find the points on surface x?y?z = 1 that are closest to the origin.

Solution:

The distance from any point (x,y, z) to the origin is

d= /2% +y? + 22

but if (z,y, ) lies on the surface z%y?z = 1, then z = -5 and so we have
z2y

d = \/x2 + 2+ tyt.
We can minimize d by minimizing the simpler expression
=2+ a2ty = fla,y).
fo =22 — ﬁ, fy =2y — #, so the critical points occur when 2x = @ and 2y = #

or 28y* = 2%y® so, 22 = y? and 2!0 = 2 = x = +210, y = £27. The four critical points
1 1 1 1

(£210, £210). Thus the points on the surface closes to origin are (£210, £210). There is

no maximum since the surface is infinite in extent.



10. Find the extreme values of f(z,y) = 22% + 3y*> — 4 — 5 on the region

D = {(z,y)| 2* +y* < 16}.

Solution:

We first need to find the critical points. These occur when
fo=4x—4=0, fy=06y=0
so the only critical point of f is (1,0) and it lies in the region z? + y? < 16.
On the circle 2% + y? = 16, we have y? = 16 — 2% and
g(x) = f(x,V16 — 22) = 22* + 3(16 — 2*) —da — 5 = —2® — 4o +43.
g(@)=0=> 20 —-4=0=2=—2
P =16—2>=16—-4=12=y = +2V3.

Now f(1,0) = —7 and f(—2,42v/3) = 47. Thus the maximum value of f(z,y) on the disc
22 +y? <16 is f(—2,42v/3) = 47, and the minimum value is f(1,0) = —7.



