Math 209: Old Final Exam Questions

1. (a) Find the mass and the moment of inertia about the y-axis for a plate with constant density k which occupies the region under the curve $y=\sin x$, above the x-axis from $x=0$ to $x=\pi$.
Note: $\int x^{2} \sin x d x=-x^{2} \cos x+2 x \sin x+2 \cos x$.
(b) Evaluate

$$
\int_{0}^{8} \int_{y^{1 / 3}}^{2} e^{x^{4}} d x d y
$$

2. Find $\iiint_{R} z d V$, where R is the region satisfying

$$
\sqrt{3\left(x^{2}+y^{2}\right.} \leq z \leq \sqrt{2-x^{2}-y^{2}} .
$$

3. Let $\vec{F}=y z \cos x \vec{i}+z \sin x \vec{j}+(y \sin x+2 z) \vec{k}$ and let C be the curve

$$
\vec{r}(t)=\left\langle\frac{\pi}{2} t^{2}, e^{t^{2}}, \cos ^{4}(t \pi)\right\rangle, \quad 0 \leq t \leq 1 .
$$

Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
4. Evaluate $\iint_{S}\left(x^{2}+y^{2}\right) d S$ where S is the surface consisting of the part of the cone $z^{2}=3\left(x^{2}+y^{2}\right)$ that lies above $z=x^{2}+y^{2}$.
5. (a) Evaluate the line integral

$$
\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y
$$

where C is the curve bounding the region enclosed by $y=x^{2}$ and $x=y^{2}$, traversed counterclockwise.
(b) Find the area of a region bounded by the curve C with parametric equation

$$
x=\cos (t), y=\sin ^{3}(t), 0 \leq t \leq 2 \pi .
$$

6. Let D be the solid enclosed by the surfaces: $2 y=\sqrt{x^{2}+z^{2}}, y=1, y=2$ and let S be the boundary of D. Find the outward flux:

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

if $\vec{F}=\left(x^{2}+y \sin (z)\right) \vec{i}-\left(y^{2}+z \sin (x)\right) \vec{j}+\left(z^{2}+x \sin (y)\right) \vec{k}$ and \vec{n} is the outward unit normal to D.
7. (a) Verify that the function $u(x, t)=\sin (x-a t)$ satisfies the wave equation

$$
u_{t t}=a^{2} u_{x x}
$$

(b) Find the equation of the tangent plane at the point $(-2,2,-3)$ to the ellipsoid

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3
$$

8. (a) Find the volume of a tetrahedron bounded by the planes $x+2 y+z=2, x=$ $2 y, x=0$ and $z=0$.
(b) Use polar coordinates to combine the sum and evaluate it

$$
\int_{1 / \sqrt{2}}^{1} \int_{\sqrt{1-x^{2}}}^{x} x y d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{x} x y d y d x+\int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} x y d y d x
$$

9. (a) Evaluate $\int_{c} y \sin z d s$, where C is the circular helix given by the equations

$$
x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi
$$

(b) Find the flux of the vector field $\vec{F}(x, y, z)=z \vec{i}+y \vec{j}+x \vec{k}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$.
10. Calculate the work done by a force field

$$
\vec{F}=\left(x^{x}+z^{2}\right) \vec{i}+\left(y^{y}+x^{2}\right) \vec{j}+\left(z^{z}+y^{2}\right) \vec{k}
$$

when a particle moves under its influence around the edge of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies in the first octant.
11. Evaluate

$$
\int_{C}(y+\sin x) d x+\left(x^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve

$$
\vec{r}(t)=\sin t \vec{i}+\cos t \vec{j}-\cos (2 t) \vec{k}
$$

with $0 \leq t \leq 2 \pi$. (Hint: Use Stokes theorem given that C lies on the surface $z=x^{2}-y^{2}$.)

