Math 209
 Assignment 9

Due: 12 Noon on Thursday, December 1, 2005.

1. Evaluate $\iint_{S} \sqrt{4 y+1} d S$ where S is the first octant part of $y=x^{2}$ cut out by $2 x+y+z=1$.
2. Evaluate $\iint_{S} x y d S$ where S is the first octant part of $z=\sqrt{x^{2}+y^{2}}$ cut out by $x^{2}+y^{2}=1$.
3. Calculate the surface area of the curved portion of a right circular cone of radius R and height h.
4. Evaluate $\iint_{S} \frac{d S}{x^{2}+y^{2}}$ where S is the part of the sphere $x^{2}+y^{2}+z^{2}=4 R^{2}$ between the planes $z=0$ and $z=R$.
5. Evaluate $\iint_{S}\left(y z^{2} \vec{i}+y e^{x} \vec{j}+x \vec{k}\right) \cdot \vec{n} d S$ where S is defined by $y=x^{2}, 0 \leqslant y \leqslant 4,0 \leqslant z \leqslant 1$, and \vec{n} is the unit normal to the surface S with positive y-component.
6. Evaluate $\iint_{S}(x \vec{i}+y \vec{j}) \cdot \vec{n} d S$ where S is the part of $z=\sqrt{x^{2}+y^{2}}$ below $z=1$, and \vec{n} is the unit normal to the surface S with negative z-component.
7. Evaluate $\iint_{S}\left(x^{2} y \vec{i}+x y \vec{j}+z \vec{k}\right) \cdot \vec{n} d S$ where S is defined by $z=2-x^{2}-y^{2}, z \geqslant 0$, and \vec{n} is the unit normal to the surface S with negative z-component.
8. Find the centroid of the surface S consisting of the part of $z=2-x^{2}-y^{2}$ above the $x y$-plane.
9. Find the moment of inertia about the z-axis of the surface S consisting of the part of $z=2-x^{2}-y^{2}$ above the $x y$-plane.
10. A circular tube $S: x^{2}+z^{2}=1,0 \leqslant y \leqslant 2$ is a model for a part of an artery. Blood flows through the artery and the force per unit area at any point on the arterial wall is given by

$$
\vec{F}=e^{-y} \vec{n}+\frac{1}{y^{2}+1} \vec{j}
$$

where \vec{n} is the unit outer normal to the arterial wall. Blood diffuses through the wall in such a way that if $d S$ is a small area on S, the amount of diffusion through $d S$ in one second is $\vec{F} \cdot \vec{n} d S$. Find the total amount of blood leaving the entire wall per second.

