Math 209 Assignment 8

Due: 12 Noon on Thursday, November 24, 2005.

- 1. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
 - (a) $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.
 - (b) $\int_C \sin y \, dx + x \cos y \, dy$, C is the ellipse $x^2 + xy + y^2 = 1$.
- 2. If f is a harmonic function, that is $\nabla^2 f = 0$, show that the line integral $\int f_y dx f_x dy$ is independent of path in any simple region D.
- 3. Find the area enclosed by the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$.
- 4. Let

$$I = \int_C \frac{ydx - xdy}{x^2 + y^2}$$

where C is a circle oriented counterclockwise.

- (a) Show that I = 0 if C does not contain the origin.
- (b) What is I if C contain the origin?
- 5. Find the curl and the divergence of the vector field $\mathbf{F} = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j} + z \, \mathbf{k}$. Is \mathbf{F} conservative?
- 6. Is there a vector field **G** on R^3 such that curl $\mathbf{G} = xy^2 \mathbf{i} + yz^2 \mathbf{j} + zx^2 \mathbf{k}$? Explain.
- 7. Identify the surface with the given vector equation.
 - (a) $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + u^2 \mathbf{k}$
 - (b) $\mathbf{r}(x,\theta) = \langle x, x\cos\theta, x\sin\theta \rangle$
- 8. Find a parametric representation for the surface.
 - (a) The part of an elliptic paraboloid $x + y^2 + 2z^2 = 4$ that lies in front of the plane x = 0
 - (b) The part of a sphere $x^2 + y^2 + z^2 = 16$ that lies above the cone $z = \sqrt{x^2 + y^2}$
- 9. Find the area of the part of the surface $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 10. Find the area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0,0), (1,0), and (1,2).