Math 209
 Assignment 8

Due: 12 Noon on Thursday, November 24, 2005.

1. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
(a) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y, C$ is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
(b) $\int_{C} \sin y d x+x \cos y d y, C$ is the ellipse $x^{2}+x y+y^{2}=1$.
2. If f is a harmonic function, that is $\nabla^{2} f=0$, show that the line integral $\int f_{y} d x-f_{x} d y$ is independent of path in any simple region D.
3. Find the area enclosed by the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$.
4. Let

$$
I=\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

where C is a circle oriented counterclockwise.
(a) Show that $I=0$ if C does not contain the origin.
(b) What is I if C contain the origin?
5. Find the curl and the divergence of the vector field $\mathbf{F}=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}+z \mathbf{k}$. Is \mathbf{F} conservative?
6. Is there a vector field \mathbf{G} on R^{3} such that $\operatorname{curl} \mathbf{G}=x y^{2} \mathbf{i}+y z^{2} \mathbf{j}+z x^{2} \mathbf{k}$? Explain.
7. Identify the surface with the given vector equation.
(a) $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u^{2} \mathbf{k}$
(b) $\mathbf{r}(x, \theta)=\langle x, x \cos \theta, x \sin \theta\rangle$
8. Find a parametric representation for the surface.
(a) The part of an elliptic paraboloid $x+y^{2}+2 z^{2}=4$ that lies in front of the plane $x=0$
(b) The part of a sphere $x^{2}+y^{2}+z^{2}=16$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$
9. Find the area of the part of the surface $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
10. Find the area of the part of the surface $z=x^{2}+2 y$ that lies above the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.

