Assignment 7

Due: 12 Noon on Thursday, November 10, 2005

1. Find the gradient vector field of the following functions:
(a) $f(x, y)=\ln (x+2 y)$;
(b) $f(x, y, z)=x \cos (y / z)$.
2. Suppose $f(x, y)=x^{2}-y^{2}$. Find $\int_{C} f d s$ where
(a) C is formed from the edges of a triangle with vertices at $(0,0),(2,1)$ and $(1,2)$.
(b) C is a circle of radius 2 centered at the origin.
3. Evaluate $\int_{C}(x+y z) d x+2 x d y+x y z d z$, where C consists of line segments from $(1,0,1)$ to $(2,3,1)$ and from $(2,3,1)$ to $(2,5,2)$.
4. The formula for a cycloid is given parametrically by $(t-\sin (t), 1-\cos (t))$. Find the length of the curve over one cycle $0 \leq t \leq 2 \pi$.
5. Determine whether or not \mathbf{F} is a conservative vector field, if it is, find a function f such that $\mathbf{F}=\nabla f$.
(a) $\quad \mathbf{F}(x, y)=(2 x \cos y-y \cos x) \mathbf{i}+\left(-x^{2} \sin y-\sin x\right) \mathbf{j}$.
(b) $\quad \mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j}$.
6. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C :
(a) $\mathbf{F}(x, y)=\left(\frac{y^{2}}{1+x^{2}}\right) \mathbf{i}+(2 y \arctan x) \mathbf{j}, \quad C: \quad \mathbf{r}(t)=\left(t^{2}\right) \mathbf{i}+(2 t) \mathbf{j}, \quad 0 \leq t \leq 1$.
(b) $\mathbf{F}(x, y, z)=\left(y^{2} \cos z\right) \mathbf{i}+(2 x y \cos z) \mathbf{j}-\left(x y^{2} \sin z\right) \mathbf{k}, \quad C: \quad \mathbf{r}(t)=\left(t^{2}\right) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}$, $0 \leq t \leq \pi$.
7. Show that the line integral is independent of path and evaluate the integral:

$$
\int_{C}\left(1-y e^{-x}\right) d x+e^{-x} d y
$$

where C is any path from $(0,1)$ to $(1,2)$.
8. Find the work done by the force field $\mathbf{F}(x, y)=\left(y^{2} / x^{2}\right) \mathbf{i}-(2 y / x) \mathbf{j}$ in moving an object from $P(1,1)$ to $Q(4,-2)$.
9. Show that if the vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is conservative and P, Q, R have continuous first-order partial derivatives, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

10. Let $\mathbf{F}(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$.
(a) Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
(b) Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is not independent of path. [Hint: Consider the upper and lower halves of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$]
