Assignment 6

Due: 12 Noon on Thursday, November 3, 2005

1. Evaluate the following triple integral:

$$
\int_{0}^{a} \int_{0}^{x} \int_{0}^{x y} x^{3} y^{2} z d z d y d x
$$

2. Evaluate the following integral

$$
\iiint_{\Omega} \frac{1}{(x+y+z+1)^{3}} d V
$$

where Ω is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
3. Consider the following iterated integral:

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x^{2}-y} f(x, y, z) d z d y d x \tag{1}
\end{equation*}
$$

(a) Identify the region D of integration (show this region on a sketch).
(b) Rewrite the integral (1) as an equivalent iterated integral in the five other orders.
4. Find the moment $M_{x y}$ of the solid E described by the inequalities

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1, \quad z \geq 0
$$

i.e. E is the upper half of the solid ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$.
5. Compute the following integral (by changing to cylindrical or spherical coordinates)

$$
\begin{equation*}
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \int_{0}^{a} z \sqrt{x^{2}+y^{2}} d z d y d x \tag{2}
\end{equation*}
$$

6. Compute the following integral (by changing to cylindrical or spherical coordinates)

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \tag{3}
\end{equation*}
$$

7. Use the cylindrical coordinates to (i) identify the solid bounded by the surface

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{3}=a^{2}\left(x^{2}+y^{2}\right)^{2} \tag{4}
\end{equation*}
$$

and (ii) compute the volume of this solid.
8. Evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where E is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
9. Find the volume of the smaller wedge cut from a sphere of radius a by two planes that intersect along a diameter at an angle of $\frac{\pi}{6}$.
10. Evaluate the integral

$$
\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(x^{3}+x y^{2}\right) d y d x
$$

