$\frac{\text{Math 209}}{\text{Assignment 5}}$

Due: 12 Noon on Thursday, October 27, 2005.

- 1. Integrate $f(x, y) = \sin(\sqrt{x^2 + y^2})$ over:
 - (a) the closed unit disc;
 - (b) the annular region $1 \leq x^2 + y^2 \leq 4$.
- 2. Calculate the following integrals by changing to polar coordinates:

(a)
$$\int_0^2 \int_0^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} \, dy \, dx;$$
 (b) $\int_0^1 \int_{-\sqrt{x-x^2}}^{\sqrt{x-x^2}} \sqrt{x^2 + y^2} \, dy \, dx.$

- 3. Find the area of the region inside the circle $r = 3\cos\theta$ and outside the cardioid $r = 1 + \cos\theta$.
- 4. Find the volume of the solid bounded above by $z = 1 (x^2 + y^2)$, bounded below by the xy-plane, and bounded on the sides by the cylinder $x^2 + y^2 x = 0$.
- 5. Find the mass and centre of mass of the plate that occupies the given region Ω with the given density function λ .
 - (a) $\Omega = \{(x, y) \in \mathbb{R}^2; \ 0 \leq x \leq a, \ 0 \leq y \leq \sqrt{a^2 x^2}\}; \ \lambda(x, y) = xy.$
 - (b) Ω is the region inside the circle $r = 2\sin\theta$ and outside the circle r = 1; $\lambda(x, y) = y$.
- 6. Consider a square fan blade with sides of length 2 and the lower left corner placed at the origin. If the density of the blade is $\lambda(x, y) = 1 + x/10$, is it more difficult to rotate the blade about the x-axis or the y-axis?
- 7. Find the surface area of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0,0), (0,1) and (2,1).
- 8. Find the surface area of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane.
- 9. Find the surface area of the surface $z = \frac{2}{3}(x^{3/2} + y^{3/2})$ for $0 \le x \le 1$ and $0 \le y \le 1$.
- 10. Find the surface area of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.