Math 209
 Assignment 5

Due: 12 Noon on Thursday, October 27, 2005.

1. Integrate $f(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right)$ over:
(a) the closed unit disc;
(b) the annular region $1 \leqslant x^{2}+y^{2} \leqslant 4$.
2. Calculate the following integrals by changing to polar coordinates:
(a) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$;
(b) $\int_{0}^{1} \int_{-\sqrt{x-x^{2}}}^{\sqrt{x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
3. Find the area of the region inside the circle $r=3 \cos \theta$ and outside the cardioid $r=1+\cos \theta$.
4. Find the volume of the solid bounded above by $z=1-\left(x^{2}+y^{2}\right)$, bounded below by the $x y$-plane, and bounded on the sides by the cylinder $x^{2}+y^{2}-x=0$.
5. Find the mass and centre of mass of the plate that occupies the given region Ω with the given density function λ.
(a) $\Omega=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leqslant x \leqslant a, 0 \leqslant y \leqslant \sqrt{a^{2}-x^{2}}\right\} ; \lambda(x, y)=x y$.
(b) Ω is the region inside the circle $r=2 \sin \theta$ and outside the circle $r=1 ; \lambda(x, y)=y$.
6. Consider a square fan blade with sides of length 2 and the lower left corner placed at the origin. If the density of the blade is $\lambda(x, y)=1+x / 10$, is it more difficult to rotate the blade about the x-axis or the y-axis?
7. Find the surface area of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$ and $(2,1)$.
8. Find the surface area of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.
9. Find the surface area of the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ for $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant 1$.
10. Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.
