Math 209

Assignment 4

Due: 12:00 noon on Thursday, October 13, 2005.

1. Evaluate the double integral by first identifying it as the volume of a solid

$$
\iint_{R}(5-x) d A, \quad R=\{(x, y) \mid 0 \leq x \leq 5,0 \leq y \leq 3\} .
$$

2. Calculate the double integral

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

3. Find the volume of the solid that lies under the hyperbolic paraboloid $z=4+x^{2}-y^{2}$ and above the square $R=[-1,1] \times[0,2]$.
4. Find the average value of $f(x, y)=e^{y} \sqrt{x+e^{y}}$ over the rectangle $R=[0,4] \times[0,1]$.
5. Evaluate the iterated integral

$$
\int_{0}^{1} \int_{x}^{(2-x)}\left(x^{2}-y\right) d y d x
$$

6. Evaluate the double integral over the domain D that is bounded by $y=\sqrt{x}$ and $y=x^{2}$ of

$$
\iint_{D}(x+y) d A
$$

7. Find the volume of a solid that is bounded by the planes $y=0, z=0, y=x$, and $6 x+2 y+3 z=6$.
8. Sketch the region of integration and change the order of integration for

$$
\int_{0}^{1} \int_{4 x}^{4} f(x, y) d y d x
$$

9. Sketch the region of integration and change the order of integration for

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} g(x, y) d x d y
$$

10. Evaluate the integral by reversing the order of integration

$$
\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x
$$

