Math 209
 Assignment 3

Due: 12:00 Noon on Thursday, October 6, 2005.

1. Find the minimum of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the condition $x+2 y+3 z=4$.
2. Find the maximum value of the function $F(x, y, z)=(x+y+z)^{2}$, subject to the constraint given by $x^{2}+2 y^{2}+3 z^{2}=1$.
3. Find the maximum and minimum values of the function

$$
f(x, y, z)=3 x-y-3 z
$$

subject to the constraints

$$
x+y-z=0, \quad x^{2}+2 z^{2}=1
$$

4. Find the extreme values of the function $f(x, y, x)=x y+z^{2}$ on the region described by the inequality $x^{2}+y^{2}+z^{2} \leq 1$. Use Lagrange multipliers to treat the boundary case.
5. Use Lagrange multipliers to prove that a rectangle with maximum area, that has a given perimeter p, is a square.
6. Evaluate

$$
\int_{0}^{2} \frac{x}{y^{2}+1} d y
$$

7. Calculate the iterated integral

$$
\int_{1}^{2} \int_{0}^{1}(x+y)^{-2} d x d y
$$

8. Calculate the double integral

$$
\iint_{R} x \sin (x+y) d A, \quad \text { where } \quad R=[0, \pi / 6] \times[0, \pi / 3] \text {. }
$$

9. Calculate the double integral

$$
\iint_{R} \frac{x}{x^{2}+y^{2}} d A, \quad \text { where } \quad R=[1,2] \times[0,1] .
$$

10. Find the volume of the solid that lies under the hyperbolic paraboloid $z=y^{2}-x^{2}$, and above the square $R=[-1,1] \times[1,3]$.
