Math 209
 Assignment 2

Due: 12 Noon on Thursday, September 29, 2005.

1. Let $R=\ln \left(u^{2}+v^{2}+w^{2}\right), u=x+2 y, v=2 x-y$, and $w=2 x y$. Use the Chain Rule to find $\frac{\partial R}{\partial x}$ and $\frac{\partial R}{\partial y}$ when $x=y=1$.
2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x y z=\sin (x+y+z)$.
3. Let f and g be two differentiable real valued functions. Show that any function of the form $z=f(x+a t)+g(x-a t)$ is a solution of the wave equation $\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
4. A function f is called homogeneous of degree \mathbf{n} if it is satisfies the equation $f(t x, t y)=$ $t^{n} f(x, y)$ for all t, where n is a positive integer. Show that if f is homogeneous of degree n, then

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

[Hint: Use the Chain Rule to differentiate $f(t x, t y)$ with respect t.]
5. Find the directional derivative of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(1,2,-2)$ in the direction of vector $\mathbf{v}=\langle-6,6,-3\rangle$.
6. The temperature at a point (x, y, z) on the surface of a metal is $T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}$ where T is measured in degree Celsius and x, y, z in meters.
(a) In which direction does the temperature increase fastest at the point $P(2,-1,2)$?
(b) What is the maximum rate of change at $P(2,-1,2)$?
7. Find the points on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ where the tangent plane is parallel to the plane $3 x-2 y+3 z=1$.
8. Find the local maximum and minimum values and saddle point(s) of the function

$$
f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2
$$

9. Find the points on surface $x^{2} y^{2} z=1$ that are closest to the origin.
10. Find the extreme values of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the region

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}
$$

