1. Evaluate $\iint_{S} xyz \, d\sigma$, where S is the portion of the surface $x^2 + z^2 = 4$ in the first octant

between the planes y = 0 and y = 1. (Ans. 2.)

- 2. Show that the area cut from the surface $az = y^2 x^2$ by the cylinder $x^2 + y^2 = a^2$ is $(5\sqrt{5}-1)\pi a^2/6$.
- 3. A thin metal funnel has the shape of the part of the cone $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 5. Find the total mass of the funnel if its density (mass per unit area) is given by $\lambda(x, y, z) = x + z$. Ans. $\frac{248\sqrt{2}}{3}\pi$.
- 4. Use the divergence theorem to find the total flux out of the given solid.

(a)
$$\vec{v}(x, y, z) = (2xy + 2z)\vec{i} + (y^2 + 1)\vec{j} - (x + y)\vec{k};$$

where the solid occupies $0 \le x \le 4$, $0 \le y \le 4 - x$, $0 \le z \le 4 - x - y.$ Ans. $\frac{2^7}{3}$.
(b) $\vec{v}(x, y, z) = 2x\vec{i} + xy\vec{j} + xz\vec{k};$ where the solid occupies $x^2 + y^2 + z^2 \le 4$. Ans. $\frac{64}{3}\pi$.

- 5. The sphere $x^2 + y^2 + z^2 = a^2$ intersects the plane x + 2y + z = 0 in a curve *C*. Calculate $\oint_C \vec{v} \cdot d\vec{r}$, where $\vec{v} = 2y\vec{i} z\vec{j} + 2x\vec{k}$ by using Stokes' theorem. $Ans. \pm \frac{5}{\sqrt{6}}\pi a^2.$
- 6. The cylinder $x^2 + y^2 = b^2$ intersects the plane y + z = a in a curve *C*. Calculate $\oint_C \vec{v} \cdot d\vec{r}$, where $\vec{v} = xy\vec{i} + yz\vec{j} + xz\vec{k}$, by using Stokes' theorem. (Ans. $\pm \pi ab^2$.)
- 7. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma$, where $\vec{F} = \langle z^2 x, -xy, 3z \rangle$ and S is the surface of the region bounded by $z = 4 - y^2$, x = 0, x = 3 and the xy-plane. (Ans. 16.)