Math 209
 Assignment 10

Not to be handed in.

1. Evaluate $\iint_{S} x y z d \sigma$, where S is the portion of the surface $x^{2}+z^{2}=4$ in the first octant between the planes $y=0$ and $y=1$. Ans. 2.
2. Show that the area cut from the surface $a z=y^{2}-x^{2}$ by the cylinder $x^{2}+y^{2}=a^{2}$ is $(5 \sqrt{5}-1) \pi a^{2} / 6$.
3. A thin metal funnel has the shape of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between $z=1$ and $z=5$. Find the total mass of the funnel if its density (mass per unit area) is given by $\lambda(x, y, z)=x+z$. Ans. $\frac{248 \sqrt{2}}{3} \pi$.
4. Use the divergence theorem to find the total flux out of the given solid.
(a) $\vec{v}(x, y, z)=(2 x y+2 z) \vec{i}+\left(y^{2}+1\right) \vec{j}-(x+y) \vec{k}$;
where the solid occupies $0 \leqslant x \leqslant 4, \quad 0 \leqslant y \leqslant 4-x, \quad 0 \leqslant z \leqslant 4-x-y . \quad$ Ans. $\frac{2^{7}}{3}$. .
(b) $\vec{v}(x, y, z)=2 x \vec{i}+x y \vec{j}+x z \vec{k} ; \quad$ where the solid occupies $x^{2}+y^{2}+z^{2} \leqslant 4 . \quad$ Ans. $\frac{64}{3} \pi$.
5. The sphere $x^{2}+y^{2}+z^{2}=a^{2}$ intersects the plane $x+2 y+z=0$ in a curve C. Calculate $\oint_{C} \vec{v} \cdot d \vec{r}$, where $\vec{v}=2 y \vec{i}-z \vec{j}+2 x \vec{k}$ by using Stokes' theorem. Ans. $\pm \frac{5}{\sqrt{6}} \pi a^{2}$.
6. The cylinder $x^{2}+y^{2}=b^{2}$ intersects the plane $y+z=a$ in a curve C. Calculate $\oint_{C} \vec{v} \cdot d \vec{r}$, where $\vec{v}=x y \vec{i}+y z \vec{j}+x z \vec{k}$, by using Stokes' theorem. Ans. $\pm \pi a b^{2}$.
7. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} d \sigma$, where $\vec{F}=\left\langle z^{2}-x,-x y, 3 z\right\rangle$ and S is the surface of the region bounded by $z=4-y^{2}, x=0, x=3$ and the $x y$-plane. Ans. 16.
