Math 209
 Assignment 1

Due: 12 Noon on Thursday, September 22, 2005.

1. Identify and sketch the level surface $f(x, y, z)=1$ for the function $f(x, y, z)=z^{2}-36 x^{2}-9 y^{2}$.
2. Find the limit if it exists, or show that the limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{(x+y)^{2}}{x^{2}+y^{2}}$.
3. Find the limit if it exists, or show that the limit does not exist: $\lim _{(x, y) \rightarrow(1,-1)} \frac{x^{2}+y^{2}-2 x-2 y}{x^{2}+y^{2}-2 x+2 y+2}$.
4. Find the limit if it exists, or show that the limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}$.
5. Find the limit if it exists, or show that the limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}}$.
6. Find the limit if it exists, or show that the limit does not exist: $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}$.

Hint. Consider using spherical coordinates: $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$.
7. The partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

is called Laplace's Equation, named after the eminent French mathematician Pierre Simon de Laplace (1749-1827). Solutions of this equation are called harmonic functions and play a role in problems of heat conduction, fluid flow, and electric potential. Which of the following functions are solutions of Laplace's equation?
(a) $u(x, y)=x^{2}+y^{2}$;
(b) $u(x, y)=\ln \left(x^{2}+y^{2}\right)^{3 / 2}$;
(c) $u(x, y)=\sin x \cosh y+\cos x \sinh y$.
8. Find an equation of the tangent plane to $z=e^{x} \ln y$ at $(3,1,0)$.
9. Find the differential of the following function: $\quad w=\frac{x+y}{y+z}$.
10. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 centimeters high and 4 centimeters in diameter if the metal in the wall is 0.05 centimeters thick and the metal in the top and bottom is 0.1 centimeters thick.

