2.5.1 Laplace equation $\quad 0 \leqslant x \leqslant L \quad 0 \leqslant y \leqslant H$

$$
\begin{aligned}
& \text { (0) } u(0, y)=g(y) \quad u(1, y)=0 \quad \frac{\partial u}{\partial y}(x, 0) \quad u(x, H)=0 \\
& \nabla^{2} u=0 \quad u(x, y)=h(x) \phi(y) \quad \Rightarrow\left\{\begin{array}{l}
\phi(0)=0 \\
\phi(H)=0
\end{array}\right. \\
& \nabla^{2} u=0 \quad \Rightarrow \quad h^{\prime \prime}(x) \phi(y)+\phi^{\prime \prime}(y) h(x)=0 \\
& \Rightarrow \frac{\hat{h}(x)}{\hat{h}(x)}=\frac{-\phi^{\prime}(y)}{\phi(y)}=\lambda \quad \Rightarrow\left\{\begin{array}{l}
h^{\prime}(x)=\lambda h(x) \\
\phi^{*}(y)=-\lambda \phi(y)
\end{array}\right. \\
& \phi(y)=-\lambda \phi(y) \\
& h^{\prime \prime}(x)=\lambda h(x) \\
& \phi^{\prime}(0)=0=\phi(H) \\
& \text { and } \\
& \begin{array}{l}
h(x)=\lambda h \\
h(L)=0
\end{array} \\
& r^{2}=-\lambda \\
& \text { If } \lambda<a \quad \phi(y)=c_{1} e^{y r \cdot x}+c_{2} e^{-y \sqrt{-x}} \\
& \phi^{\prime}(y)=\left(c_{1} e^{y \sqrt{-\lambda}}-c_{2} e^{-y / \sqrt{-\lambda}}\right) \sqrt{-\lambda} \\
& \Delta^{\prime}(0)=0 \quad \Rightarrow \quad c_{1}=c_{2} \\
& \phi(H)=0 \Rightarrow C_{1}=0 \Rightarrow \text { trinis solution }
\end{aligned}
$$

If $\lambda=0 \quad \Rightarrow \quad \phi(y)=a y+b$

$$
\left.\begin{array}{l}
\phi(H)=0 \Rightarrow a H+b=0 \\
\phi(\theta)=a=0 \quad \Rightarrow \quad a=0
\end{array}\right\} \Rightarrow b=0 \quad \text { trivial }
$$

$$
\begin{aligned}
& \lambda>\quad \phi(y)=a \sin (y \sqrt{\lambda})+b \cos (y \sqrt{\lambda}) \\
& \quad \phi(y)=a \sqrt{\lambda} \cos (y \sqrt{\lambda})-b \sqrt{\lambda} \sin (y \sqrt{\lambda}) \\
& \phi^{\prime}(a)=0 \quad \Rightarrow \quad a=0 \\
& \phi(H)=0 \quad \Rightarrow \quad b \cos (H \sqrt{\lambda})=0 \quad \Rightarrow \quad H \sqrt{\lambda}=\frac{(2 n-1) \pi}{2} \quad n=1,2,3
\end{aligned}
$$

$$
\Rightarrow \lambda_{n}=\left(\frac{(2 n-1) \pi}{2 H}\right)^{2}, \phi_{n}(y)=b_{n} \cos \left(\frac{2 n-1) n}{2 H} y\right)
$$

$$
h(x)=\lambda_{n} h(x) \quad h^{\prime}(x)=\left(\frac{2 n-1}{2 H} n\right)^{2} h(x)
$$

$$
h(L)=s
$$

$$
\Rightarrow h(x)=a_{1} \cosh \frac{(2 n-1) \pi}{2 H}(x-L)+a_{2} \sinh \frac{(2 n-1) n}{2 H}(x-2)
$$

$$
h(L)=0 \quad \Rightarrow \quad a_{1} \cosh \left(\frac{(2 n-1) \pi(0)}{2 H}\right)+a_{2} \sinh \left(\frac{(2 n-1) \pi}{2 H}(0)\right)=0
$$

$$
\Rightarrow a_{1}=0
$$

$$
h_{n}(x)=a_{n} \sinh \left(\frac{(2 n-1) \pi}{2 H}(x-L)\right)
$$

$$
u(x \cdot y)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{(2 n-1)}{2 H} \pi y\right) \sinh \left[\left(\frac{2 n-1}{2 H}\right) \pi(x-L)\right]
$$

$$
u(0, y)=g(y)
$$

$$
u(0, y)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{2 n-1}{2 H} n y\right) \sinh \left(\frac{-(2 n-1) \pi L}{2 H}\right)=g(y)
$$

$$
\begin{aligned}
& \int_{0}^{H} g(y) \cos \left(\frac{2 n-1}{2 H} \pi y\right) d y=\int_{=}^{H} \sum_{n=1}^{\alpha} A_{n} \operatorname{Cos}\left(\frac{2 n-1}{2 H} \pi y\right) \cos \left(\frac{(2 m-1) \pi y}{2 H}\right) \sin n\left(\frac{(1-2 n r y}{2 H}\right) \\
& \text { Using the ortharanalite of cosine une han }
\end{aligned}
$$

Using the onthogomaling of cosine we hane.

$$
A_{m}=\frac{2}{L \sinh \left(\frac{(1-2 m) \pi L}{2 H}\right)} \int_{0}^{H} g(y) \cos \left(\frac{(2 m-1) \pi y}{2 H}\right) d y
$$

2.5.1 (7)

$$
\begin{aligned}
& u(x, y)=\phi(y) h(x), \quad \nabla^{2} u=0 \Rightarrow \frac{h^{\prime \prime}(x)}{h(x)}=\frac{-\phi(y)}{\phi(y)}=\lambda \\
& \phi^{\prime}(H)=0=\phi^{\prime}(0) \quad h(l)=0 \\
& \phi^{\prime \prime}(y)=-\lambda \phi(y) \\
& \phi^{\prime}(h)=0 \\
& \phi^{\prime}(0)=0
\end{aligned}
$$

$\hat{\lambda(0)} \phi(y)=c_{1} e^{y f y}+c_{2} e^{-y f y} \quad$ apply $\phi^{\prime}(0)=\phi^{\prime}(H)=0 \Rightarrow \begin{gathered}\text { trinal } \\ \text { case }\end{gathered}$

$$
\lambda=0 \quad \phi(y)=a y+b \quad \phi^{\prime}(y)=a
$$

$\left.\begin{array}{l}\phi^{\prime}(0)=0 \\ \phi^{\prime}(4)=0\end{array}\right\} \Rightarrow a=0 \quad \phi(y)=$ constart is nontinal
$\Delta>0$

$$
\begin{aligned}
& \phi(y)=a \sin (y \sqrt{\lambda})+b \cos (y \sqrt{\lambda}) \\
& \phi^{\prime}(y)=a \sqrt{\lambda} \cos (y \sqrt{\lambda})-b \sqrt{\lambda} \sin (y \sqrt{\lambda}) \\
& \phi^{\prime}(0)=0 \Rightarrow a=0 \\
& \phi^{\prime}(H)=0 \Rightarrow-b \sqrt{\lambda} \sin (H \sqrt{\lambda})=0 \quad \Rightarrow \lambda=\frac{(n \pi)^{2}}{H} \\
& \phi_{n}(y)=b_{n} \cos \left(\frac{n n y}{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h^{\prime \prime}(x)=\lambda h(x) \\
& h(L)=0 \\
& u(x, y)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi y}{H}\right) \sinh \left(\frac{n n(x-L)}{H}\right) \\
& u(0, y)=f(y)=a_{n}+\sum_{n=1}^{\infty} \operatorname{hn}_{n} \operatorname{sos}\left(\frac{n n y}{H}\right) \sinh \left(\frac{n \pi(x-L)}{H}\right)
\end{aligned}
$$

using the orthoganaliy of cosines:

$$
\begin{gathered}
A_{n}=\frac{2}{L \sinh \left(\frac{-n \pi L}{H}\right)} \int_{0}^{H} f(y) \cos \left(\frac{n \pi y}{H}\right) d y \\
A_{0}=\frac{1}{L \sinh \left(\frac{-n \pi L}{H}\right)} \int_{0}^{H} f(y) d y \\
a(x, y)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi y}{H}\right) \sinh \left(\frac{n \pi(x-L)}{H}\right)
\end{gathered}
$$

2.5.8 (b) $a<r<b$

$$
\begin{aligned}
& \frac{\partial u}{\partial r}(a, \theta)=0 \quad u(b, \theta)=g(\theta) \\
& \nabla \cdot u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=\varepsilon \\
& u(r,-\pi)=u(r, \pi) \quad, \quad \frac{\partial u}{\partial r}(a, \theta)=0 \quad \Rightarrow \quad G^{\prime}(a)=0 \\
& \frac{\partial u}{\partial \theta}(r,-\pi)=\frac{\partial u}{\partial \theta}(r, \pi) \quad \\
& u(r, \theta)=\phi(\theta) \sigma(r) \quad \phi(-\pi)=\phi(\pi) \\
& l
\end{aligned}
$$

plyy into (L)

$$
\begin{aligned}
& \longrightarrow \quad \frac{r}{\epsilon} \frac{d}{d r}\left(r \frac{d \epsilon}{d r}\right)=\frac{-1}{\phi} \frac{d^{2} \phi}{d \theta^{2}}=\lambda \\
& \begin{array}{l}
\frac{d^{2} \phi}{d \theta^{2}}=-\lambda \phi \\
\phi(-\pi)
\end{array}=\phi(\pi) \quad \Longrightarrow \quad \lambda_{n}=\left(\frac{n \pi}{2 n}\right)^{2}=n^{2} \\
& \frac{d \phi}{d \theta}(-n)=\frac{d \phi}{d \theta}(n) \quad \Longrightarrow \quad \phi_{n}(\theta)=a, \sin n \theta+n_{1} \cos n \theta \\
& \frac{r}{\sigma} \frac{d}{d r}\left(r \frac{d \epsilon}{d r}\right)-n^{2} \sigma=0
\end{aligned}
$$

for $n \neq 0 \quad G_{1}=c_{1} r^{n}+c_{2} r^{-n}$
for $n=0 \quad G_{2}=\bar{c}_{1}+\bar{c}_{2} \ln n$

$$
\begin{aligned}
& G_{2}^{\prime}(a)=\bar{c}_{2} \frac{1}{a}=0 \Rightarrow \bar{c}_{2}=0 \quad \Rightarrow G_{2}=\bar{c}_{1} \\
& G_{1}^{\prime}(r)=n c_{1} r^{n-1}-n c_{2} r^{-n-1} \Rightarrow G^{\prime}(a)=0 \Rightarrow n c_{1} a^{n-1}-n c_{1} a^{-n-1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow n c_{1} a^{n-1}-\frac{n c_{2}}{a^{n+1}}=0 \Rightarrow \frac{n c_{1} a^{2 n}-n c_{2}}{a^{n+1}}=0 \\
& \Rightarrow n\left(c_{1} a^{2 n}-c_{2}\right)=0 \Rightarrow c_{1} a^{2 n}=c_{2} \\
& G(r)=c\left(r^{n}+a^{2 n} r^{-n}\right) \\
& a(r, \theta)=\sum_{n=0}^{\infty} A_{n}\left(r^{n}+a^{2 n-n} r^{2} \cos n \theta+\sum_{n=1}^{\infty} B_{n}\left(r^{n}+a^{2 n} r^{-n}\right) \sin n 6\right. \\
& g(\theta)=u(b, \theta)=\sum_{n=0}^{\infty} A_{n}\left(b^{n}+a^{2 n} b^{-n}\right) \cos n \theta+\sum_{n=1}^{\infty} B_{n}\left(b^{n}+a^{2 n} b^{-n}\right) \sin \theta \theta \\
& A_{0}=\frac{1}{2 \pi} \int_{-1}^{n} g(\theta) d \theta \\
& A_{n}=\frac{1}{n\left(b^{n}+a^{2 n} b^{-n}\right)} \int_{-\pi}^{\pi} g(\theta) \cos n \theta d \theta \\
& B_{n}=\frac{1}{n\left(b^{n}+a^{2 n} b^{-n}\right) \int_{-\pi}^{\pi} g(\theta) \sin n \theta d \theta}
\end{aligned}
$$

3.2.2(b) $\quad f(x)=e^{-x}$

$$
-L \leqslant x \leqslant L
$$

$$
a_{0}=\frac{1}{2 L} \int_{-2}^{2} f(x) d x
$$

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n n x}{L} d x
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} e^{-x} d x=\frac{1}{2 L}\left[-e^{-x}\right]_{-L}^{L}=\frac{1}{2 L}\left[-e^{-L}+e^{1 L}\right]=\frac{\sin h n}{L} \\
& \begin{aligned}
a_{n}=\frac{1}{L} \int_{-L}^{L} e^{x} \cos \frac{n \pi x}{L} d x & =\frac{\left(-e^{-L} t \cos (n n)+e^{-L} n \pi \sin n \pi+e^{L} L \operatorname{con}(n n)\right.}{L^{2}+n^{2} n^{2}}+e^{L} n \pi \sin x n \theta
\end{aligned} \\
& \\
& =\frac{2 L^{2}(-1)^{n}}{L^{2}+n^{2} \pi^{2}} \frac{e^{L}-e^{-L}}{2}=\frac{2 L(-1)^{n}}{L^{2}-n^{2} \pi^{2}} \operatorname{sinhL} \\
& \begin{aligned}
\left.b_{n}=\frac{1}{L} \int_{-L}^{L} e^{-x} \sin \frac{n \pi x}{L} d x=\frac{\left(-e^{-L} n \pi \cos (n \pi)-e^{-L} L \sin (n n)+e^{L} n n(\operatorname{con}(n)\right.}{L^{2}+n^{2} n^{2}}-e^{L} L \sin (n n)\right)
\end{aligned} \\
& \\
& =
\end{aligned}
$$

3.2 .2 d

$$
\begin{aligned}
& f(x)= \begin{cases}0 & x<0 \\
x & x>0\end{cases} \\
& 0 d x+\frac{1}{2 L} \int_{-L}^{L} x d x=\left.\frac{1}{2 L} \frac{x^{2}}{2}\right|_{0} ^{L}=\frac{L^{2}}{4 L}=\frac{L}{4} \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{1}{L} \int_{0}^{L} x \cos \left(\frac{n \pi x}{L}\right) d x \\
& =\frac{L(\cos (n \pi)-n n \sin (n \pi)-1)}{n^{2} \pi^{2}}=\frac{L\left((-1)^{2}-1\right)}{n^{2} n^{2}}= \begin{cases}0 & n \text { even } \\
-\frac{2 L}{n^{2} \pi^{2}} & n \text { edd }\end{cases} \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{1}{L} \int_{0}^{L} x \sin \left(\frac{n \pi x}{L}\right) d x \\
& =\frac{-L(-\sin (n n)+n n c(n n))}{n^{2} n^{2}}=\frac{-L\left(n n(-1)^{n}\right)}{n^{2} n^{2}}=\frac{\operatorname{Ln} n \mid-1)^{n+1}}{n^{2} n^{2}}
\end{aligned}
$$

3.2 .3
lat $\bar{a}_{0}, \bar{a}_{n}, \vec{b}_{n}$ be Fourizu cesfficiont for $f(x)$.
(at $\hat{a}_{n}, \hat{a}_{n}, \hat{b}_{n}$ be Founien coeflicien for $g(x)$.
lat a_{0}, a_{n}, b_{n} be Founter coemeient for $c_{1} f(x)+c_{2} g(x)$

$$
\begin{align*}
a_{0}= & \frac{1}{2 L} \int_{-L}^{L}\left(c_{1} f(x)+c_{2} g(x)\right) d x=\frac{1}{2 L}\left\{c_{1} \int_{-L}^{L} f(x) d x+c_{2} \int_{-L}^{L} g(x) d x\right) \\
\Rightarrow & a_{0}=c_{1} \bar{a}_{0}+c_{2} \hat{a}_{0} \mid \tag{I}\\
a_{n}= & \frac{1}{L} \int_{-L}^{L}\left(c_{1} f(x)+c_{2} g(x)\right) \cos \left(\frac{n \pi x}{2}\right) d x=\frac{c_{1}}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& +\frac{c_{2}}{L} \int_{-L}^{L} g(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow a_{n}=c_{1} \bar{a}_{n}+c_{2} \bar{a}_{n} \tag{II}
\end{equation*}
$$

Simplarly: $b_{n}=c_{1} \bar{b}_{n}+c_{2} \hat{b}_{n}$
Foarion sines of aftigg

$$
\begin{aligned}
& c_{1} f(x)+c_{2} g(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)=\begin{array}{l}
u \operatorname{sing}(2)(I I) \\
\operatorname{ard}(I I)
\end{array} \\
& =\sum_{n=0}^{\infty}\left(c_{1} \bar{a}_{n}+c_{2} \hat{a}_{n}\right) \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty}\left(c_{1} \bar{b}_{n}+c_{2} \hat{b}_{n}\right) \sin \left(\frac{n \pi x}{L}\right) \\
& =\sum_{n=0}^{n=0} c_{1} \tilde{a}_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=0}^{\infty} c_{2} \hat{a}_{n} \cos \left(\frac{n n x}{L}\right)+\sum_{n=1}^{\infty} c_{1} \bar{b}_{n} \sin \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} c_{2} \hat{b}_{n} \sin \left(\frac{n}{L}\right. \\
& =c_{1}\left[\sum_{n=0}^{\infty} \bar{a}_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} \bar{b}_{n} \sin \left(\frac{n \pi x}{L}\right)\right]+c_{2}\left[\sum_{n=0}^{\infty} \hat{a}_{n} \sin \left(\frac{n x}{L}\right)+\sum_{n=1}^{\infty} \hat{b}_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
& =c_{1}(\text { Fank } \operatorname{sen} \text { of } f(x))+c_{2}(\text { Fanis serin } f g(x)
\end{aligned}
$$

$$
\begin{aligned}
& 3.3 .2(6) \\
& \begin{array}{l}
f(x)=\left\{\begin{array}{l}
1 \\
3 \\
3 \\
0 \\
\frac{1}{6}(x<L / 6 \\
x>\frac{L}{2} L
\end{array}\right. \\
\int_{0}^{L} f(x) \sin \left(\frac{n n x}{L}\right) d x
\end{array} \\
& =\frac{2}{L} \int_{0}^{L / L} \sin \left(\frac{n \pi x}{L}\right)+\frac{2}{L} \int_{\frac{-}{6}}^{L / 2} 3 \sin \left(\frac{n \pi x}{L}\right) d x+\int_{\frac{L}{2}}^{L} 0 d x \\
& =\frac{2}{L}\left(-\operatorname{Co}\left(\frac{n \pi x}{L}\right) \cdot \frac{L}{n \pi}\right)_{0}^{L / 6}+\left.\frac{6}{L}\left(-\operatorname{Co}\left(\frac{n \pi x}{L}\right) \frac{L}{n \pi}\right)\right|_{L / 6} ^{L} \\
& =\frac{2}{n \pi}\left(-\operatorname{Cos}\left(\frac{n \pi}{6}\right)+1\right)+\frac{6}{n \pi}\left[-\operatorname{Co}\left(\frac{n \pi}{2}\right)+\cos \left(\frac{n \pi}{6}\right)\right] \\
& \begin{array}{l}
=\frac{1}{n n}\left[2-6 \cos \left(\frac{n \pi}{2}\right)+4 \cos \left(\frac{n \pi}{6}\right)\right] \\
\frac{3.3 .2(c)}{} \quad f(x)= \begin{cases}0 & x<\frac{L}{2} \\
x & x>\frac{L}{2}\end{cases}
\end{array} \\
& \begin{array}{l}
=\frac{1}{n n}\left[2-6 \cos \left(\frac{n \pi}{2}\right)+4 \cos \left(\frac{n \pi}{6}\right)\right] \\
\frac{3.3 .2(c)}{} \quad f(x)= \begin{cases}0 & x<\frac{L}{2} \\
x & x>\frac{L}{2}\end{cases}
\end{array} \\
& B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n n x}{L} d x=\frac{2}{L} \int_{\frac{L}{2}}^{L} x \sin \frac{n n x}{L} d x \\
& =\frac{-L}{n^{2} \pi}\left[-2 \sin (A n)+2 n \pi \cos (n \pi)^{\frac{2}{2}}+2 \sin \left(\frac{n \pi}{2}\right)-n \pi \cos \left(\frac{n \pi}{2}\right)\right] \\
& =\frac{-L}{n^{2} n^{2}}\left[2 n \pi(-1)^{n}+2 \sin \left(\frac{n \pi}{2}\right)-n n \cos \left(\frac{n n}{2}\right)\right] \\
& B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n n x}{L}\right) d x
\end{aligned}
$$

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\frac{1}{L} \int_{0}^{L} x^{2} d x
$$

$$
=\frac{1}{L}\left[\frac{x^{3}}{3}\right]_{0}^{L}=\frac{L^{2}}{3}
$$

$A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{M x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} x^{2} \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2 L^{2}}{n^{3} \pi^{3}} \begin{array}{r}n^{2} \pi^{2} \sin (n \pi)-2 \sin \phi n \pi x \\ +2 n \pi(\cos (u p) d\end{array}$

$$
=\frac{4 t^{2}}{n^{2} \pi^{2}}(-1)^{n}
$$

3.3.5(c) $f(x)= \begin{cases}0 & x<L / 2 \\ x & x>L / 2\end{cases}$

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\frac{1}{L} \int_{0}^{\frac{L}{2}} d d x+\frac{1}{L} \int_{\frac{L}{3}}^{L} x d x=\frac{1}{L}\left(\frac{x^{2}}{2}\right)_{\frac{L}{2}}^{L}=\frac{3 L}{\frac{L}{2}}
$$

$$
\begin{aligned}
A_{n=}= & \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{\frac{L}{2}}^{L} x \cos \left(\frac{n n x}{L}\right) d x= \\
& L(2 \cos (n \pi)+2 n \pi \sin (n \pi)-2 n
\end{aligned}
$$

$$
\frac{L\left(2 \cos (n \pi)+2 n \pi \sin (n \pi)^{\frac{L}{2}}-2 \cos \left(\frac{n \pi}{2}\right)-n \pi \sin \left(\frac{n \pi}{2}\right)\right)}{n^{2} \pi^{1}}
$$

$$
=\frac{L}{n^{2} \pi^{2}}\left(2(-1)^{n}-2 \cos \left(\frac{n \pi}{2}\right)-n \pi \sin \left(\frac{n \pi}{2}\right)\right)
$$

$$
\begin{aligned}
& \frac{3.3 .17}{\int_{0}^{1} \frac{d x}{1+x^{2}}} \\
& \text { (a) } \int_{a}^{1} \frac{1}{1+x^{2}} d x=\left.\tan ^{-1}(x)\right|_{0} ^{1}=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4} \\
& \text { (b) } \frac{1}{1+x^{2}}=\sum_{n=0}^{\infty} x^{(n)}(-1)^{n}=1-x^{2}+x^{4}-x^{6}+\cdots \\
& \int_{0}^{1} \frac{1}{1+x^{2}} d x=\int_{0}^{1} \sum_{n=0}^{\infty} x^{2 n}(-1)^{n} d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} x^{2 n} d x \\
& =\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{n}+1}\right|_{0} ^{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \\
& \text { (c) } \sum_{n=e}^{\infty}(-1)^{n} \frac{1}{2 n+1}-\frac{\pi}{4} \\
& \Rightarrow n=4 \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}
\end{aligned}
$$

3.4 .8

$$
\begin{aligned}
& \text { Cet } a(x, t)=\sum_{n=0}^{\infty} A_{n}(t) \operatorname{Cos}\left(\frac{n n x}{L}\right)+\sum_{n=1}^{\infty} B_{n}(t) \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{\partial^{2} U}{\partial x^{2}}=\sum_{n=0}^{\infty}-A_{n}(t) \cos \left(\frac{n \pi x}{L}\right)\left(\frac{n \eta}{L}\right)^{2}+\sum_{n=1}^{\infty}-B_{n}(t) \sin \left(\frac{n n \eta}{L}\right)\left(\frac{n \pi}{L}\right)^{2} \\
& \frac{\partial n}{\partial t}=\sum_{n=0}^{\infty} \dot{A}_{n}(t) \operatorname{Cos}\left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \left(\frac{n n x}{L}\right) \\
& k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \Rightarrow \\
& K \sum_{n=0}^{\infty}-A_{0}(t) \cos \left(\frac{n \pi x}{L}\right)\left(\frac{n \pi}{L}\right)^{2}+\sum_{n=1}^{\infty}-B_{n}(t) \sin \left(\frac{n n y}{l}\right)\left(\frac{n x}{L}\right)^{2} \\
& =\sum_{n=-1}^{\infty} A_{n}^{\prime}\left(+\cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \left(\frac{n n x}{t}\right)\right. \\
& \Rightarrow\left\{\begin{array}{l}
-A_{n}(t)\left(\frac{n \pi}{L}\right)^{2} k=A_{n}(t) \Rightarrow A_{n}(t)=A_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} K t} \\
-B_{n}(t)\left(\frac{n \pi}{L}\right)^{2} K=B_{n}(t) \Rightarrow B_{n}(t)=B_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} K t}
\end{array}\right. \\
& \Rightarrow a(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-\left(\frac{n \pi)^{2}}{L} k t\right.} \cos \left(\frac{n n t}{L}\right)+\sum_{A=1}^{\infty} B_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \\
& \frac{\partial u}{\partial x}=\sum_{n=0}^{\infty}-A_{n} e^{-\left(\frac{n n}{l}\right)^{2} k T} \sin \left(\frac{n n x}{l}\right)\left(\frac{n \pi}{l}\right)+\sum_{n=1}^{\infty-1} B_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} K^{2}} \quad Q\left(\frac{n n x)}{L}\right)\left(\frac{n \pi}{l}\right) \\
& \frac{\partial u(0, t)}{\partial x}=0=\sum_{n=1}^{\infty} B_{n} e^{-\left(\frac{n}{L}\right)^{2} k t}\left(\frac{n \pi}{c}\right) \Rightarrow B_{n}=0 \\
& \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \cos \left(\frac{n \pi x}{L}\right) \\
& U(x, 0)=f(x)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) \\
& \int_{0}^{L} \cos \left(\frac{n n x}{L}\right) f(x) d x=\int_{0}^{L} A_{n} \cos \left(\frac{n \pi x}{L}\right) \operatorname{co}\left(\frac{m \pi x}{L}\right) d x \\
& \Rightarrow A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \operatorname{co}\left(\frac{n n x}{L}\right) d x \\
& A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
\end{aligned}
$$

