Math 300, Advanced Boundary Value Problems Fall 2006

Midterm

Wednesday Oct 25, 2006, 1:00-1:50 PM.

NAME:	ID:
-------	-----

Exercise	max	points
1	25	
2	25	
3	50	
Total	100	

Problem 1

(a) Show that the Chebychev equation

$$(1 - x^2)u'' - xu' + \lambda u = 0, \qquad 0 \le x \le 1,$$

is not of Sturm-Liuoville form.

(b) Multiply the Chebychev equation by $\frac{1}{\sqrt{1-x^2}}$ and show that the resulting equation is of Sturm-Liouville type. Identify p, q, σ .

[25]

Problem 2

Give lower and upper bounds for the leading eigenvalue of the Legendre equation

$$(1 - x^2)u'' - 2xu' + \lambda u = 0 \qquad 0 \le x \le 1,$$

$$u(0) = 0, \quad u'(1) = -u(1).$$

Problem 3

[50]

Solve the Laplace equation inside the semicircle of radius $0 \le r \le 1$ and angle $0 \le \theta \le \pi$, where the diameter is perfectly insulated, and $u(1,\theta) = 2 + \cos 2\theta$.

(Hint: A Cauchy-Euler equation can be solved by functions of the form $G(r) = r^{\alpha}$.)