MATH 300 Fall 2004
 Advanced Boundary Value Problems I
 Midterm Examination
 Wednesday October 27, 2004

Department of Mathematical and Statistical Sciences
University of Alberta

A thin, homogeneous bar of length π has its sides poorly insulated, so that heat radiates freely from the bar along its length. Assuming that the heat transfer coefficient A is constant, and that the temperature T of the surrounding medium is also constant, the temperature $u(x, t)$ in the bar at position x and time t satisfies the partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-A(u-T), \quad 0<x<\pi, \quad t>0
$$

The ends of the bar are kept at temperature T, and the initial temperature is $f(x)=x+T$, for $0<x<\pi$.
(1) State the initial boundary value problem satisfied by $u(x, t)$.
(2) Transform this problem into a familiar problem by setting $v(x, t)=e^{A t}[u(x, t)-T]$, and then finding the initial boundary value problem satisfied by $v(x, t)$.
(3) Use the method of separation of variables to solve the problem in part (2), showing all of the necessary steps.

Solution:
(1) The initial boundary value problem satisfied by $u(x, t)$ is

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-A(u-T), \quad 0<x<\pi, \quad t>0 \\
& u(0, t)=T, \quad t>0 \\
& u(\pi, t)=T, \quad t>0 \\
& u(x, 0)=x+T, \quad 0<x<\pi
\end{aligned}
$$

(2) Letting $v=e^{A t}(u-T)$, we have

$$
\begin{aligned}
\frac{\partial v}{\partial t} & =A e^{A t}(u-T)+e^{A t} \frac{\partial u}{\partial t} \\
\frac{\partial^{2} v}{\partial x^{2}} & =e^{A t} \frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

so that

$$
\frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}=A e^{A t}(u-T)+e^{A t} \frac{\partial u}{\partial t}-e^{A t} \frac{\partial^{2} u}{\partial x^{2}}=e^{A t}\left(\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+A(u-T)\right)=0
$$

since u is a solution to the original partial differential equation.

Therefore, $v(x, t)$ satisfies the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
& v(0, t)=0, \quad t>0 \\
& v(\pi, t)=0, \quad t>0 \\
& v(x, 0)=x, \quad 0<x<\pi
\end{aligned}
$$

(3) Assuming a solution of the form $v(x, t)=X(x) \cdot T(t)$, we have

$$
X \cdot T^{\prime}=X^{\prime \prime} \cdot T
$$

and separating the variables, we get

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda
$$

so that

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<\pi \quad \text { and } \quad T^{\prime}(t)+\lambda T(t)=0, \quad t>0
$$

We can satisfy the boundary conditions by requiring that $X(0)=X(\pi)=0$, so that $X(x)$ satisfies the boundary value problem

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<\pi \\
X(0) & =0 \\
X(\pi) & =0 .
\end{aligned}
$$

If $\lambda=0$, the general solution to this equation is

$$
X(x)=a x+b
$$

and applying the boundary conditions, we find $a=b=0$, and $X(x)=0$ for $0 \leq x \leq \pi$.
Similarly, if $\lambda<0$, say $\lambda=-\mu^{2}$ where $\mu \neq 0$, the general solution to the equation is

$$
X(x)=a \cosh \mu x+b \sinh \mu x
$$

and applying the boundary conditions, we find $a=b=0$, and again the solutuion is $X(x)=0$ for $0 \leq x \leq \pi$.
If $\lambda>0$, say $\lambda=\mu^{2}$ where $\mu \neq 0$, the general solution to the equation in this case is

$$
X(x)=a \cos \mu x+b \sin \mu x
$$

and applying the boundary condition $X(0)=0$ we get $a=0$. From the second boundary condition, in order to get a nontrivial solution, we need $\sin \mu \pi=0$, so that μ must be a multiple of π.
The eigenvalues are $\mu_{n}^{2}=n^{2}$, for $n=1,2, \ldots$, and the corresponding eigenfunctions are $X_{n}(x)=\sin n x$, for $n=1,2, \ldots$.
For each $n \geq 1$, the corresponding solution to $T^{\prime}+n^{2} T=0$ is $T_{n}(t)=e^{-n^{2} t}$, and the normal modes are given by

$$
v_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)=e^{-n^{2} t} \sin n x
$$

for $0<x<\pi$, and $t>0$.

Since both the partial differential equation and the boundary conditions are linear and homogeneous, then we can use the superposition priciple to write

$$
v(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} t} \sin n x
$$

for $0<x<\pi, t>0$, and $v(x, t)$ satisfies the heat equation and the boundary conditions.
In order to satisfy the initial condition, we set $t=0$ in this expression to get

$$
x=v(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

so that b_{n} 's are the Fourier sine coefficients of the function $v(x, 0)=x, 0<x<\pi$, and for $n \geq 1$,

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x=\frac{2}{\pi}\left[-\left.\frac{x \cos n x}{n}\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos n x d x\right]=\frac{2}{n}(-1)^{n+1}
$$

Therefore,

$$
v(x, t)=\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} e^{-n^{2} t} \sin n x
$$

for $0<x<\pi, t>0$, and the temperature in the poorly insulated bar is given by

$$
u(x, t)=T+e^{-A t} v(x, t)=T+\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} e^{-\left(n^{2}+A\right) t} \sin n x
$$

for $0<x<\pi, t>0$.

