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Review

The final exam will cover the material of the whole course. As a reminder I summarize
the keywords from the material before the midterm.

1. General: polar, cylindrical, spherical coordinates; steady states, equilibrium
solutions; some linear algebra; PWS-functions; Fourier series; Fourier sine se-
ries; Fourier cosine series; linear operators; separation of variables for the heat
equation and for the wave equation with all kind of boundary conditions; in 1-D
and in 2-D; Laplace equation

2. Calculus of Fourier series: Differentiation term-by-term; Integration.

3. Separation, nonhomogeneous equations:
Review example 1: Solve

∂2u

∂t2
= 25

∂2u

∂x2
+ t2 sin(x), 0 ≤ x ≤ 2π

u(0, t) = 0 = u(2π, t)

u(x, 0) = 3 sin(2x)

∂u(x, 0)

∂t
= 7 sin(2x)

4. Separation; nonhomogeneous boundary conditions:
Review example 2: Solve

∂u

∂t
= c

∂2u

∂x2
, 0 ≤ x ≤ 1

∂u(0, t)

∂x
= d =

∂u(2π, t)

∂x
u(x, 0) = cos(πx)

5. both: nonhomogeneous equation and nonhomogeneous boundary con-
ditions
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6. Sturm-Liouville eigenvalues problems Definition; Spectral Theorem;
Review example 3: The equation for heat flow in a non-uniform rod of length
2 with leaking ends is described by

c(x)ρ(x)
∂u

∂t
=

∂

∂x

(
K0(x)

∂u

∂x

)
+ αu

u(0, t) = − ∂

∂x
u(0, t) u(2, t) =

∂

∂x
u(2, t),

with physical parameter functions c(x), ρ(x), K0(x) > 0, and α > 0. Use sepa-
ration and show that the spatial problem is a Sturm-Liouville problem (Note:
you do not need to solve this equation!)

7. Rayleigh quotient: You need to be able to write it down!
Review example 4: Estimate the leading eigenvalue of

ϕ′′ − xϕ + λϕ = 0

ϕ′(0) + ϕ(0) = 0 ϕ′(1) = 0.

8. Generalized Fourier-series, Bessel functions

9. Fourier transform Fourier integral formula, complex formulations; Fourier-
transform, Fourier sine and -cosine transforms.
Review example 5: Find (a) the Fourier transform, (b) the Fourier-sine trans-
form and (c) the Fourier cosine transform of

f(x) =





0 x < 0
1 0 < x < 1
2 1 < x < 2
0 x > 2

10. Fourier transform methods for PDE: Gauss kernel, heat kernel, convolu-
tion formula for the heat equation, D’Alemberts formula for the wave equation.

Review example 6: Use the error-function to solve

∂u

∂t
=

∂2u

∂x2
, ∞ < x < ∞

u(x, 0) =

{
100, |x| < 1
0 |x| > 1

11. Method of Characteristics:
Review example 7:
Solve the initial value problem for −∞ < x < ∞, t ≥ 0

∂w(x, t)

∂t
+ 5

∂w(x, t)

∂x
= e3t

w(x, 0) = e−x2
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12. D’Alembert solution of the wave equation:
Review problem 8:
Solve the wave equation for −∞ < x < ∞, t ≥ 0:

∂2u

∂t2
= 25

∂2u

∂x2

u(x, 0) = x2

∂u(x, 0)

∂t
= 3.


