University of Alberta
Mathematical and Statistical Sciences
Dr. Thomas Hillen
Dr. A. Yessaei

Math 300, Fall 2006

Review

The final exam will cover the material of the whole course. As a reminder I summarize the keywords from the material before the midterm.

1. General: polar, cylindrical, spherical coordinates; steady states, equilibrium solutions; some linear algebra; PWS-functions; Fourier series; Fourier sine series; Fourier cosine series; linear operators; separation of variables for the heat equation and for the wave equation with all kind of boundary conditions; in 1-D and in 2-D; Laplace equation
2. Calculus of Fourier series: Differentiation term-by-term; Integration.
3. Separation, nonhomogeneous equations:

Review example 1: Solve

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =25 \frac{\partial^{2} u}{\partial x^{2}}+t^{2} \sin (x), \quad 0 \leq x \leq 2 \pi \\
u(0, t) & =0=u(2 \pi, t) \\
u(x, 0) & =3 \sin (2 x) \\
\frac{\partial u(x, 0)}{\partial t} & =7 \sin (2 x)
\end{aligned}
$$

4. Separation; nonhomogeneous boundary conditions: Review example 2: Solve

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq 1 \\
\frac{\partial u(0, t)}{\partial x} & =d=\frac{\partial u(2 \pi, t)}{\partial x} \\
u(x, 0) & =\cos (\pi x)
\end{aligned}
$$

5. both: nonhomogeneous equation and nonhomogeneous boundary conditions
6. Sturm-Liouville eigenvalues problems Definition; Spectral Theorem;

Review example 3: The equation for heat flow in a non-uniform rod of length 2 with leaking ends is described by

$$
\begin{array}{r}
c(x) \rho(x) \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0}(x) \frac{\partial u}{\partial x}\right)+\alpha u \\
u(0, t)=-\frac{\partial}{\partial x} u(0, t) \quad u(2, t)=\frac{\partial}{\partial x} u(2, t),
\end{array}
$$

with physical parameter functions $c(x), \rho(x), K_{0}(x)>0$, and $\alpha>0$. Use separation and show that the spatial problem is a Sturm-Liouville problem (Note: you do not need to solve this equation!)
7. Rayleigh quotient: You need to be able to write it down!

Review example 4: Estimate the leading eigenvalue of

$$
\begin{array}{rll}
\varphi^{\prime \prime}-x \varphi+\lambda \varphi & = & 0 \\
\varphi^{\prime}(0)+\varphi(0)=0 & & \varphi^{\prime}(1)=0
\end{array}
$$

8. Generalized Fourier-series, Bessel functions

9. Fourier transform Fourier integral formula, complex formulations; Fouriertransform, Fourier sine and -cosine transforms.
Review example 5: Find (a) the Fourier transform, (b) the Fourier-sine transform and (c) the Fourier cosine transform of

$$
f(x)= \begin{cases}0 & x<0 \\ 1 & 0<x<1 \\ 2 & 1<x<2 \\ 0 & x>2\end{cases}
$$

10. Fourier transform methods for PDE: Gauss kernel, heat kernel, convolution formula for the heat equation, D'Alemberts formula for the wave equation.

Review example 6: Use the error-function to solve

$$
\begin{array}{rlr}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, & \infty<x<\infty \\
u(x, 0) & = \begin{cases}100, & |x|<1 \\
0 & |x|>1\end{cases}
\end{array}
$$

11. Method of Characteristics:

Review example 7:
Solve the initial value problem for $-\infty<x<\infty, t \geq 0$

$$
\begin{aligned}
\frac{\partial w(x, t)}{\partial t}+5 \frac{\partial w(x, t)}{\partial x} & =e^{3 t} \\
w(x, 0) & =e^{-x^{2}}
\end{aligned}
$$

12. D'Alembert solution of the wave equation: Review problem 8:
Solve the wave equation for $-\infty<x<\infty, t \geq 0$:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =25 \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =x^{2} \\
\frac{\partial u(x, 0)}{\partial t} & =3 .
\end{aligned}
$$

