Math 525, Differential Equations II

Winter 2015

Assignment 5, due March 27, 2015, 9 AM

Exercise 18:

For $\mu \in[0,1)$ we study the following dynamical system

$$
\begin{aligned}
\dot{y} & =-y \\
\dot{x} & = \begin{cases}\mu(1-x)^{2}, & 0 \leq x<1 \\
-(1-x)^{2}, & 1 \leq x\end{cases}
\end{aligned}
$$

Find the global attractor for each $\mu \in[0,1)$.
Show that the attractors are upper semicontinuous in 0 but not lower semicontinuous.

Exercise 19:

Let $\Lambda(B):=\bigcup_{x \in B} \omega(x)$. Give an example for a dynamical system that satisfies

$$
\Lambda(B) \neq \Lambda(\Lambda(B))
$$

(Not the exmaple from Robinson, Exercise 10.3, p. 281!!)

Exercise 20:

Show that the solution semigroup of $\dot{u}=u^{2 / 3}$ is not injective.
Exercise 21: (Corrected version) (Chemotactic blow-up)
Chemotaxis describes the active orientation of moving cells along chemical gradients. The classical Keller-Segel model for chemotaxis reads in its simplest form in two dimensions:

$$
\begin{align*}
u_{t} & =\nabla \cdot(\nabla u-\chi u \nabla v)) \\
\nabla v & =-\frac{1}{2 \pi} \frac{x}{|x|^{2}} * u \tag{1}
\end{align*}
$$

where $\chi>0$ denotes the chemotactic sensitivity; $u(x, t)$ denotes the cell distribution and $v(x, t)$ is the distribution of the external chemoattractant. The symbol $*$ denotes convolution. We consider the above system (1) on \mathbb{R}^{2} and we assume that for given initial data

$$
u(x, 0)=u_{0}(x) \in L^{\infty}\left(\mathbb{R}^{2}\right) \cap W^{1,1}\left(\mathbb{R}^{2}\right), \quad u_{0}(x) \geq 0
$$

there exists a unique non-negative local solution

$$
u(x, t) \in C^{0}\left([0, \tau), L^{\infty}\left(\mathbb{R}^{2}\right) \cap W^{1,1}\left(\mathbb{R}^{2}\right)\right)
$$

Prove the following Theorem:
Theorem 0.1 (Perthame)
Any solution of (1) with initial conditions satisfying

$$
m_{2}(0):=\int_{\mathbb{R}^{2}} \frac{|x|^{2}}{2} u_{0}(x) d x<\infty
$$

and

$$
m_{0}(0):=\int_{\mathbb{R}^{2}} u_{0}(x) d x>\frac{8 \pi}{\chi}
$$

blows up in finite time.
(see next page)

1. For the proof use Nagai's argument by considering the second moment

$$
m_{2}(t)=\int_{\mathbb{R}^{2}} \frac{|x|^{2}}{2} u(x, t) d x
$$

and show that

$$
\frac{d}{d t} m_{2}(t)=2 m_{0}-\frac{\chi}{2 \pi} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} u(x, t) u(y, t) \frac{x(x-y)}{|x-y|^{2}} d x d y
$$

2. Show that

$$
\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} u(x, t) u(y, t) \frac{x(x-y)}{|x-y|^{2}} d x d y=\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} u(x, t) u(y, t) \frac{-y(x-y)}{|x-y|^{2}} d x d y
$$

and use this equality to show that

$$
\frac{d}{d t} m_{2}(t)=2 m_{0}\left(1-\frac{\chi}{8 \pi} m_{0}\right) .
$$

3. Proof the Theorem.
