Math 525, Differential Equations
 Winter 2015

Assignment 3, due February 25, 2015, 9 AM

Exercise 11:

Find the spectrum and the corresponding eigenfunctions in $L^{2}([0, \pi])$ for the operators A and B with

$$
\begin{array}{ll}
A=-\frac{d^{2}}{d x^{2}}, & \mathcal{D}(A)=\left\{f \in L^{2}(0, \pi) ; A f \in L^{2}(0, \pi), f(0)=0, f(\pi)=0\right\} \\
B=-\frac{d^{2}}{d x^{2}}, & \mathcal{D}(B)=\left\{f \in L^{2}(0, \pi) ; B f \in L^{2}(0, \pi), \frac{d}{d x} f(0)=0, \frac{d}{d x} f(\pi)=0\right\}
\end{array}
$$

Exercise 12:

Let A be a symmetric linear operator on a Hilbert space H with $R(A)=H$ and with compact inverse A^{-1}. The natural domain of definition is

$$
\mathcal{D}(A)=\{u \in H ; A u \in H\}
$$

Show that there exists an orthonormal basis $\left\{w_{j}\right\}$ of H such that

$$
\begin{equation*}
\mathcal{D}(A)=\left\{u ; u=\sum c_{j} w_{j}, \quad \sum\left|c_{j}\right|^{2} \lambda_{j}^{2}<\infty\right\} . \tag{3}
\end{equation*}
$$

Exercise 13:

For $A=-\Delta$ show that on a bounded domain the norm on $\mathcal{D}\left(A^{\frac{1}{2}}\right)$ is equivalent to the norm on H^{1}. (Hint: If A is symmetric, $(A u, v)=(u, A v)$, then also $A^{\frac{1}{2}}$).

Exercise 14:

Show that if Ω is bounded, then $L^{2}(\Omega)$ is compactly embedded in $H^{-1}(\Omega)$.

Exercise 15:

Let V be the subspace of $H^{1}(\Omega)$, consisting of functions with zero integral

$$
V:=\left\{u \in H^{1}(\Omega): \int_{\Omega} u(x) d x=0\right\} .
$$

Arguing by contradiction, use Rellich-Kondrachov compactness to show that there exists a constant $C>0$ such that we have a Poincaré inequality

$$
\|u\|_{2} \leq C\|\nabla u\|_{2} .
$$

(Hint, you may assume that if $\nabla u=0$ a.e., then $u=$ const. a.e.).

Exercise 16: (The Nagumo Model)

Fitzhugh and Nagumo derived a model for signal transduction in the axon:

$$
u_{t}=u_{x x}+u(1-u)(u-\alpha)
$$

where u represents the membrane potential, and $0<\alpha<1$. We study this model on $0 \geq x \geq l$ with homogeneous Neumann boundary conditions,

$$
u_{x}(t, 0)=0, \quad u_{x}(t, l)=0
$$

(a) Find a system of two ODEs which describe the steady states. We denote this system of ODE's by $(*)$ for now.
(b) Study the steady states of $\left(^{*}\right)$ and their stability.
(c)-(e) on next page.
(c) Show that

$$
H(u, v)=\frac{1}{2}\left(u_{x}\right)^{2}-\frac{1}{4} u^{4}+\frac{1+\alpha}{3} u^{3}-\frac{\alpha}{2} u^{2}
$$

is a Hamiltonian function for the system $\left({ }^{*}\right)$.
(d) Sketch the phase portrait of $\left(^{*}\right)$ in the $\left(u, u_{x}\right)$-plane. Distinguish the qualitatively different cases depending on $\alpha \in(0,1)$.
(e) Find the steady states which satisfy the Neumann boundary conditions, and plot the steady states u as a function of x.

