Math 525, Ordinary Differential Equations II Winter 2015

Assignment 2, due January 30, 2015, 9 AM

Exercise 6: (Mollifier) (4)

1. The mollification of a function can be written in two ways. Show that

$$
\frac{1}{h^n} \int_{\mathbb{R}^n} \rho\left(\frac{x-z}{h}\right) u(z) dz = \frac{1}{h^n} \int_{\mathbb{R}^n} \rho\left(\frac{z}{h}\right) u(x-z) dz
$$

2. Assume a Lipschitz continuous function $u \in C^{0,1}(\mathbb{R}^n)$ is uniformly Lipschitz continuous with constant K :

$$
|u(x) - u(y)| \le K|x - y|.
$$

Show that each mollification $u_h = \rho_h * u$ is uniformly Lipschitz continuous with the same constant K.

Exercise 7: (Interpolation Inequality) (4) Use Hölder's inequality to show the *interpolation inequality*: Assume $1 \leq p \leq q \leq r < \infty$ and consider $\lambda \in (0,1)$ such that $\frac{1}{q} = \lambda \frac{1}{p} + (1 - \lambda) \frac{1}{r}$. Show

$$
||u||_{L^{q}} \leq ||u||_{L^{p}}^{\lambda} ||u||_{L^{r}}^{(1-\lambda)}.
$$

$$
Exercise 8: (Weak convergence)
$$
\n
$$
(2)
$$

If $x_n \in C^0([a, b])$ and $x_n \to x$ in $C^0([a, b])$, show that $\{x_n\}$ is pointwise convergent on $[a, b]$, i.e. that $x_n(t)$ converges for all $t \in [a, b]$.

Exercise 9: (Weak convergence in a Hilbert space) (2) Let H be a Hilbert space. Show that if $x_n \to x$ in H, and $||x_n|| \to ||x||$, then $x_n \to x$.

Exercise 10: (Energy Method) (8)

We use the *energy method* to show that all solutions of the following reaction-diffusion equation approach 0 as $t \to \infty$: On $\Omega = [0, 1]$ we consider

$$
u_t = 2u_{xx} - 3u
$$

$$
u_x(0, t) = 0, \t u_x(1, t) = 0,
$$

where lower case indices denote the partial derivative with respect to that variable, e.g. $u_t = \frac{\partial}{\partial t} u(x, t).$

1. Use Young's inequality (with $p = q = 2$) to show that the *energy*

$$
E[u, u_x](t):=\frac{1}{2}\int_0^1(|u|^2+|u_x|^2)dx
$$

satsfies the differential inequality

$$
\frac{\partial}{\partial t}E(t) \le -2\int_0^1 |u_{xx}|^2 dx - 3E(t).
$$

- 2. Use Gronwall's inequality to show that $E(t) \to 0$ as $t \to \infty$.
- 3. Argue that $u(t)$ converges in $H^1([0,1])$ to 0 as $t \to \infty$. Does $u(t)$ also converge in $C^0([0,1])$?