December 23, 2014

(4)

(2)

(8)

Math 525, Ordinary Differential Equations II Winter 2015

Assignment 2, due January 30, 2015, 9 AM

Exercise 6: (Mollifier)

1. The mollification of a function can be written in two ways. Show that

$$\frac{1}{h^n} \int_{\mathbb{R}^n} \rho\left(\frac{x-z}{h}\right) u(z) dz = \frac{1}{h^n} \int_{\mathbb{R}^n} \rho\left(\frac{z}{h}\right) u(x-z) dz$$

2. Assume a Lipschitz continuous function $u \in C^{0,1}(\mathbb{R}^n)$ is uniformly Lipschitz continuous with constant K:

$$|u(x) - u(y)| \le K|x - y|.$$

Show that each mollification $u_h = \rho_h * u$ is uniformly Lipschitz continuous with the same constant K.

Exercise 7: (Interpolation Inequality) (4) Use Hölder's inequality to show the *interpolation inequality*: Assume $1 \le p \le q \le r < \infty$

and consider
$$\lambda \in (0,1)$$
 such that $\frac{1}{q} = \lambda \frac{1}{p} + (1-\lambda) \frac{1}{r}$. Show

$$||u||_{L^q} \le ||u||_{L^p}^{\lambda} ||u||_{L^r}^{(1-\lambda)}$$

If $x_n \in C^0([a, b])$ and $x_n \rightharpoonup x$ in $C^0([a, b])$, show that $\{x_n\}$ is pointwise convergent on [a, b], i.e. that $x_n(t)$ converges for all $t \in [a, b]$.

Exercise 9: (Weak convergence in a Hilbert space) (2) Let *H* be a Hilbert space. Show that if $x_n \rightharpoonup x$ in *H*, and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.

Exercise 10: (Energy Method)

We use the *energy method* to show that all solutions of the following reaction-diffusion equation approach 0 as $t \to \infty$: On $\Omega = [0, 1]$ we consider

$$u_t = 2u_{xx} - 3u$$

 $u_x(0,t) = 0, \qquad u_x(1,t) = 0,$

where lower case indices denote the partial derivative with respect to that variable, e.g. $u_t = \frac{\partial}{\partial t} u(x, t)$.

1. Use Young's inequality (with p = q = 2) to show that the *energy*

$$E[u, u_x](t) := \frac{1}{2} \int_0^1 (|u|^2 + |u_x|^2) dx$$

satsfies the differential inequality

$$\frac{\partial}{\partial t}E(t) \le -2\int_0^1 |u_{xx}|^2 dx - 3E(t).$$

- 2. Use Gronwall's inequality to show that $E(t) \to 0$ as $t \to \infty$.
- 3. Argue that u(t) converges in $H^1([0,1])$ to 0 as $t \to \infty$. Does u(t) also converge in $C^0([0,1])$?