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A CONJECTURE IN ADDITION CHAINS 
RELATED TO SCHOLZ'S CONJECTURE 

WALTER AIELLO AND M. V. SUBBARAO 

Dedicated to the memory of D. H. Lehmer 

ABSTRACT. Let l(n) denote, as usual, the length of a shortest addition chain 
for a given positive integer n . The most famous unsolved problem in addition 
chains is Scholz's 1937 conjecture that for all natural numbers n, 1(2n - 1) < 

I(n) + n - 1. While this conjecture has been proved for certain classes of values 
of n, its validity for all n is yet an open problem. In this paper, we put forth 
a new conjecture, namely, that for each integer n > 1 there exists an addition 
chain for 2n - 1 whose length equals l(n) + n - 1 . Obviously, our conjecture 
implies (and is stronger than) Scholtz's conjecture. However, it is not as bold as 
conjecturing that 1(2n - 1) = I(n) + n - 1 , which is known to hold, so far, for 
only the twenty-one values of n which were obtained by Knuth and Thurber 
after extensive computations. By utilizing a series of algorithms we establish our 
conjecture for all n < 128 by actually computing the desired addition chains. 
We also show that our conjecture holds for infinitely many n, for example, for 
all n which are powers of 2. 

1. INTRODUCTION 

A sequence of positive integers 1 = aO < a, < ... < ar = n is said to be 
an addition chain for n if for each step i, 1 < i < r, we have ai = aj + ak 
for some j, k such that k < j < i. The integer r is called the length of the 
addition chain for n. The minimal value of r for all possible addition chains 
for n is denoted by 1(n). 

In 1937, Scholz [6] conjectured that, for all n > 1, we have 

(1. 1) (2n-1)< l(n) + n - 1. 

Many of the investigations in addition chains concern this celebrated conjecture. 
Now, let the binary representation of n > 1 be 

(1.2) n=2co+2c +...+2ct, co >cl > >ct O. 

Following Knuth [4], we write 

(1.3) i(n)= log 2 1[log2 n] = co 
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and 
(1.4) v(n) = t + 1 = the number of ones in the binary representation of n. 

The ith step ai = aj + ak (k < j < i) is called (i) a simple 
(1.5) stepif j=i-1, k= and(ii)astarstepif j=i-1,and 

(iii) a "doubling" if j = k = i - 1. 

(1.6) A chain for n is a star chain provided all its steps are star steps. 

(1.7) l/* (n) denotes the length of a minimal star chain for n . (An in- 
1.7) teger n may have more than one star chain of minimal length.) 
D. H. Lehmer [5] suggested the problem of finding the minimum of es + 

(r - s), where r = length of an addition chain for n, and s = number of 
simple steps and e is a parameter. Note that for e = 1 this reduces to the 
study of l(n) . 

The Scholz conjecture (1.7) is now known to be true for all integers n with 
v(n) < 4. The results for v(n) = 1 or 2 are due to Utz [9], for v(n) = 3 to 
Gioia, Subbarao and Sugunamma [2]; and for v(n) = 4 the results are due to 
Knuth [4]. In addition, the Scholz conjecture has been proved by A. Brauer [1] 
to hold for all n for which l(n) = l*(n). It may be noted that for all n for 
which v(n) < 4 we have l(n) = l*(n). Optimistic people hoped this equality 
would hold for all n. 

However, Hansen [3] proved the astonishing result that l(n) < 1*(n) for 
infinitely many n. Define a Hansen chain for an integer n as one in which 
certain elements in the chain are underlined and such that each member of the 
chain after the first uses the largest underlined element less than the member 
as a summand. Hansen proved that Scholz's conjecture is true for integers n 
that include a Hansen chain among their minimal chains. Such integers n are 
called Hansen numbers. A challenging open question now is whether or not 
there exist non-Hansen numbers. 

Every known integer n for which l(n) < 1*(n) is a Hansen number. Knuth 
found that the first five numbers n for which l(n) < l*(n) are 12509, 13207, 
13705, 15473 and 16537. Thurber [8] found more such numbers including 
20753, 23447, 24797, 26391, 27401, 30897, 31001, 32921, 33065 and 33074. 
But all these numbers being Hansen numbers satisfy the Scholz conjecture. 

The solutions of the equation 
(1.8) 1(2n- 1) = I(n) +n -1 
have also attracted some attention. Knuth used extensive computations to show 
that (1.8) holds for all n < 14. Thurber [8] extended this list by showing that 
n = 15, 16, 17, 18, 20, 24, 32 also satisfy (1.8). Stolarsky [7] conjectured 
that 

(1.9) 1(n) > A(n) + log2 v(n). 
If this conjecture holds, one can show that equation (1.8) has infinitely many 

solutions n including those for which v(n) = 1 or 2. 

2. SHORT CHAIN FOR (2n - 1) AND CONJECTURE C 

A chain for 2n - 1 is said to be "short" if its length equals l(n) + n - 1, 
which we shall call Scholz's number and denote it by S(n). We now propose: 
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2.1. Conjecture C. For every n > 1, the number 2n - 1 has a short chain. 

2.2. Remark. Obviously, Conjecture C implies and is stronger than Scholz's 
conjecture. If a short chain for 2n - 1 is also the shortest chain for 2n - 1, 
then of course it provides a solution for (1.8). 

We now state a series of algorithms which help us to actually construct short 
chains for 2n - 1. 

Utilizing these, we prove conjecture C for all n < 128 and also for n which 
are powers of 2. 

2.3. Definition. A reverse addition chain for 2n - 1 is a decreasing sequence 
of numbers beginning with 2n - 1 and ending with unity which, when the order 
is reversed, becomes an addition chain for 2n - 1. 

2.4. Definition. A segment of a reverse addition chain for 2n - 1 is a sequence 
{D1, D2, ... , Ds} of integers D1 > D2 > ... > Ds > 1 such that each D-term 
can be expressed as the sum of two succeeding D's, or the sum of a succeeding 
D-term and unity. Note that unity need not be the last term of a segment. 
Formally, this means that for 1 < i < s - I, Di = Dj + Dk, i < j < k < s, 
or Di = Dj + 1, i < j < s. The "length" of the segment is s-the number of 
terms in it. 

Remark. Our method of constructing a reverse addition chain for 2n- 1 mainly 
consists of constructing successive suitable segments and putting them together; 
each segment begins and ends with numbers of the form 2b- 1 . This procedure, 
however, may not work for some n, and then, we have to use other devices. 

2.5. Algorithm I. This is for constructing a segment for 2n - I, n odd. Set 
m = (n + 1)/2 and 

C1 = 2n - 1, 

C2 = (2- 1)-(2m- 1)= 2m + + 2n1 

The next m - 2 terms are constructed by successive "halfings," so that C3 = 
2 C2... Cm = 2 2+ ***+ 2(n+l)2 . Next set 

Cm+, = 2m - 1, 

Cm+2= Cm=(2m-1)- 1, 

Cm+3 = ICm+2 = 2m`1 - 1. 

Note that 

Ci = C2 + Cm+i, 

Cm+i = Cm+2 + 1, 

Cm+2 = 2Cm+3. 

Thus, { C1, C2,..., Cm+3} is a valid step-down segment. To construct the next 
segment, we begin with 2m 1 - 1 . 

2.6. An alternative to Algorithm I. We set 

C,=2n-1 (nodd). 
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Set r = (n - 1)/2 and 

C2 = (2' - 1) -(2r _ 1) = 2r + ...+2 2n-1 

C3 = C2 = 2r-l + .. . + 2n-2 

C4 = 2 C3 

C5 = 2 C4 

Cr+2= 20+... +2n-r-1 = =- - 2(n+1)/2 -1 

We next define 

Cr+3 = Cr+2 - 1 - -(n+1)2 2, 

Cr+4 = 2Cr+3 = 2r - 1. 

The length of the segment {Cn, ... , C+4} is = r + 3 = n25 = the same 
length as for the segment in 2.5. Analogous to star chains, we may say that the 
segment {CI, ..., Cr+4} is a "star" segment. 

2.7. Algorithm II. This method is used if n is even. Let m = n/2 and set 

C1 = 2n - 1, 

C2 =(2- 1) -(2m - 1) = 2m + ... n-1 

Divide by 2 successively m times to get C3 = 2 C2 * * 

Cm+2 = 20 + ... + 2n121 = 2m - 1. 

We now have a valid segment {C1, C2, ... , Cm+2}, where C1 = C2 + Cm+2. 
We can then apply a suitable algorithm to 2m - 1. Note that the number of 
elements in this segment is m + 2. 

Before proceeding to the other algorithms we prove 

2.8. Theorem. Conjecture C holds for all integers n which are powers of 2. 
Proof. Let n = 2a , a being a positive integer. Applying Algorithm II succes- 
sively a - 2 times and adding up the lengths of all the segments, with due care 
to avoid duplication in counting the elements, we get this sum as 

(2a-1 + 1) + (2a-2 + 1) + ..* + (21 + 1) + (20 + 1) = 2a _ 1 + a = n-I + I(n), 

since 1(2a) = a; the theorem follows at once. O 

2.9. Algorithm III. This is to be tried when 31n, and n > 6. Usually, this 
gives a shorter segment than Algorithm I. Set m = and 

C1 = 2n - 1, 

C2 = (2n 1)-(2m -1) = 2m + * + 2 

Dividing by 2 a total of (n - 1) times, we get 

-3+1 = 2/ + ... + 22n/3 

Then set CG13+2 = 2m- I = 20 + ... + 22n/3-1 . Then for elements CG13+3, ... 

Cm+3 we successively divide CG13+1 by two n + 1 more times so that CG13+3 = 
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2n/3 + * * * + 22n13-1 , and finally, C2n13+3 = Cm+3 = 20 + ... + 2n/3-1 = 2 -1. 

We then have a valid segment going from 2n/3 - 1 to 2n _ 1, since 

Cl = C2 + CG13+2 C 

C13+2 = Cm+3 + Cn/3+3, 

and the rest of the elements in the segment are obtained by doubling some other 
element. 

2.10. Algorithm IV. This is to be tried when n is odd and sufficiently large. 
However, use of this method does not always give us a valid segment, since a 7 
is needed at one point to step from one element to another. Thus a 7 must be 
present in the final chain in order for the construction to be valid. 

Here we set m = n+3 and 

C = 2 = 20 + .. .+2n 

C2 = (2n 1) -(2m -1) = 2m + + 2n-1. 

Divide by 2 successively m - 4 (= n-5) times to get 

Cm-2 = 24 + ... + 2(n+3)/2. 

Then set Cm-, = 2(m+3)/2 _1 = 20 + *. + 2(n+3)/2-1, and divide Cm-2 by 2 
four more times to get 

Cm = 23 + ... + 2(n+3)/2-1 

and 
Cm+3 = 20 + ... + 2(n-3)/2-4 = 2(n-3)/2 _ 1 = 2m - 1 

So Cl = C2 + Cm- 1, but in order to get Cmi, = 20 + ... + 2(n+3)/2-1 , we must 
add 7 = 20 + 21 + 22 to Cm = 23 + ... + 2(n+3)/2-1. Thus we do not have a 
valid segment unless one of the Ci 's equals 7, and if we include this string in 
our construction we must ensure that a 7 appears in the final result to have a 
valid addition chain. 

2.1 1. Algorithm V. This algorithm is similar to Algorithm IV and is used when 
n is odd and sufficiently large. As in Algorithm IV, use of this method does not 
always give a valid segment, the presence of a 31 being needed. Thus we must 
ensure that a 31 appears in the final result for that result to be a valid addition 
chain if use of this method is part of the process of construction. 

Take m = n+5. Then set 

C1 = 2 

C2 =(2 _1)-(2m-l) =2m + -+2n- 

Divide by 2 a total of (m - 6) times to get 

Cm-4 = 26 + ... + 2(n+5)/2. 

Then set Cm-3 = 20 + -.. + 2(n+5)/2-1 = 2(n+5)/2 _ 1. 
Divide Cm-4 by 2 six more times to get Cm-2 = 25 + + 2(n+5)2-1 and 

finally 
Cm+3 = 20 + ... + 2(n-3)/2-1 - 2(n-3)/2 - 1 
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Now, C1 = C2 + Cm-3, Cm-3 = Cm-2 + 31, and all other elements in the chain 
are obtained by doubling some existing element. 

We can now apply a suitable algorithm to Cm+3 = 2(n-3)/2 1 to continue 
the process, if needed. 

2.12. Algorithm VI. Again, this method is similar to Algorithms IV and V 
except that this time we take m = n+?4. Now we must ensure that 127 be 
present in the final result in order to have a valid addition chain. 

Take m = n27 and set 
2 

C1=2 -1 and C2=2m+...+2nl. 

Successively divide by 2 a total of m - 8 times to get Cm-6 = 28++ + 2(n+7)/2 . 
Then set Cm-5 = 20 + ... + 2(n+7)/2-1 and successively divide Cm-6 by 2 eight 
more times to get 

Cm-5 = 27 + ... + 2(n+7)/2-1 

and 
Cm+3 = 20 + ... + 2(n-7)/2-1 = 2(n-7)/2 _ 1 

Here C1 = C2 + Cm-5 and Cm-5 = Cm-4 + 127. We can apply an appropriate 
algorithm to Cm+3 if necessary. The final result will be a valid addition chain 
only if a 127 appears in that result. 

2.13. Special methods. For n = 33, 77, and 129 no combination of Algo- 
rithms I-VI yields a short chain. Special methods must then be employed. If 
a segment or string terminates at 2m - 1 = 33 or 77, we apply one of these 
methods to obtain a final, short chain. 

For n = 33 and 77 we exhibit valid short chains in the Supplement section 
at the end of the Appendix. 

A complete list of short chains for all n < 128 is available from the authors. 
The algorithms used for the generation of these short chains for n < 128 are 
shown in the Appendix. 

2.1.4. We would like to note that these methods, although demonstrated for 
n only up to 128, will produce valid short chains for some n higher than 128. 
Indeed, we conjecture that the use of these methods, coupled with other similar 
algorithms, would suffice to give short chains for arbitrarily large n. 
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