Midterm Exam 2

(9:30-10:45 am on November 9, 2010)
Problem 1 (10 pts). A rectangular gate of uniform thickness and width $w=2 \mathrm{~m}$ holds back a depth of water as shown.
(a:7) Determine the minimum weight needed to keep the gate closed.
(b:3) Determine the vertical component of the reaction force at the hinge.
Be sure to include a complete Free Body Diagram and list of relevant assumptions in your solution.

Problem 2 (12 pts). Water flows steadily up the vertical 0.1 m diameter pipe and out the nozzle, which is 0.05 m in diameter, discharging to atmospheric pressure. The stream velocity at the nozzle exit must be $20 \mathrm{~m} / \mathrm{s}$. Please do the following:
(a:5) Calculate the minimum gage pressure required at section 1 . Be sure to clearly state any relevant assumptions.
(b:4) Where is the pressure largest, at A or B ? You do not need to calculate the pressure, but you do need to adequately justify your answer.
(c:3) Does the water accelerate through the nozzle? Provide a brief explanation. (The outlet of the nozzle is located at section 2).

(a) Rectangle

(c) Semicircte

(b) Circle

(d) Triangle

(e) Quarter circle

