Homework 4

(due at 11:00 am on March 25, 2014)
Problem 1. Using the Laplace transform find the temperature T distribution in a rod of unit length, one end of which is held at $T=0$ and the other at T^{*}. The initial temperature distribution is $T=0$ throughout the rod.

Problem 2. Applying the Laplace transform methods, solve the heat conduction problem on a half-line:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0, \\
u(0, t) & =0(t>0), \\
u(x, 0) & =1(x>0) .
\end{aligned}
$$

Compare with the solution obtained by independent means, e.g. separation of variables.

Problem 3. Applying the Laplace transform methods, solve the heat conduction problem on a half-line:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0, \\
u(0, t) & =u_{0} \cos \omega t(t>0), \\
u(x, 0) & =0(x>0),
\end{aligned}
$$

and the solution should be bounded at $x=+\infty$.
Problem 4. Find a solution of the Laplace equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0, x>0, t>0 \\
u(x, 0) & =0(x>0) \\
\frac{\partial u}{\partial x}(0, y) & =\left\{\begin{array}{c}
-q(0<y<b) \\
0(y>b)
\end{array}\right.
\end{aligned}
$$

where $q=$ const. Moreover, find the magnitude of the flow $q(x, 0)=\partial u / \partial y(x, 0)$ through the horizontal boundary of the domain.

Problem 5. Applying the Laplace transform methods, solve the following problem on a half-line:

$$
\begin{aligned}
\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{2} u}{\partial t^{2}} & =0, x>0, t>0 \\
u(0, t) & =u_{0}, u_{x x}(t, 0)=0(t>0) \\
u(x, 0) & =u_{t}(x, 0)=0(x>0)
\end{aligned}
$$

and the solution should be bounded at $x=+\infty$.
Problem 6. Applying the Laplace transform methods, solve the following problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}} & =0, l>x>0, t>0 \\
u(0, t) & =0, u_{x}(t, l)=0(t>0) \\
u(x, 0) & =0, u_{t}(x, 0)=-u_{0}(x>0)
\end{aligned}
$$

