Homework 3

(due at 11:00 am on March 11, 2014)
Problem 1. Let $\langle x, y\rangle$ be an inner product and $\alpha \in \mathbb{C}$. Prove that

$$
\langle\alpha x, y\rangle=\bar{\alpha}\langle x, y\rangle,
$$

where $\bar{\alpha}$ is a complex conjugate of α.
Problem 2. Consider $\mathrm{d} / \mathrm{d} x$ as a linear operator acting on all functions f in $C[0,1]$ such that $f^{\prime}(t)$ exists at each $t \in(0,1)$.
(a) How to define the domain D of this operator such that the operator maps a subset of $C[0,1]$ into $C[0,1]$? Hint: appeal to uniform continuity.
(b) Is this operator bounded or unbounded? Prove your assertion.

Problem 3. Using affine transforms, find the solution for a submerged jet (liquid ejected from a pipe in the space filled with the same liquid) in a half-plane $x>0,-\infty<$ $y<+\infty$:

$$
\begin{aligned}
u u_{x}+v u_{y} & =u_{y y}, \\
u_{x}+v_{y} & =0, \\
|u| & \rightarrow 0, y \rightarrow \pm \infty .
\end{aligned}
$$

Here (u, v) is the velocity field with (x, y)-components, respectively.

Figure 1: Submerged jet.
Hint: introduce a stream-function $\psi: u=\psi_{y}, v=-\psi_{x}$ and assume symmetry w.r.t. $y=0$.

Problem 4. Using affine transforms, find the solution for an axisymmetric drop spreading on a flat surface, cf. figure 2 , described by the following equation

Figure 2: Spreading drop.

$$
\frac{\partial h}{\partial t}=\frac{2}{3 r} \frac{\partial}{\partial r}\left(r h^{3} \frac{\partial h}{\partial r}\right),
$$

with the boundary condition $h=0$ at $r=\infty$ and a mass conservation condition, i.e. mass of the drop should be constant.

Problem 5. Find the Fourier transformation of the following functions

1. $-2 x e^{-x^{2}}$
2. $e^{-a|x|}$
3. $-x^{2} e^{-a x^{2}}$
4. $f(x)=\left\{\begin{array}{c}1-|x|,|x|<1, \\ 0,|x| \geq 1\end{array}\right.$

Problem 6. Prove that

$$
\xi(x, a) * \xi(x, b)=2 \xi(x, a+b),
$$

where $\xi(x, \alpha)=(\pi \alpha)^{-1 / 2} e^{-x^{2} /(4 \alpha)}$ is a heat kernel and $*$ is the convolution sign.
Problem 7. Using the Fourier transform solve

$$
\begin{aligned}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}} \pm k^{2} \psi & =H(x, y) \\
x^{2}+y^{2} & \rightarrow \infty
\end{aligned}
$$

by constructing the appropriate Green's function.
Hint. An explicit representation of Green's function should be given in terms of the modified Bessel functions.

Problem 8. Using the Fourier transform method solve

$$
\begin{aligned}
& \psi_{x x}+\psi_{z z}=0, \\
& z=0: \left\lvert\, \begin{array}{c}
\phi_{t t}+g \phi_{z}=0 \\
t=0: \quad \phi=-\frac{p}{\rho} \delta(x), \phi_{t}=0
\end{array}\right. \\
& z=-\infty: \phi_{z}=0,
\end{aligned}
$$

where $\delta(x)$ is the Dirac delta-function and one can assume coefficients g, p, ρ to be constant. Determine the quantity

$$
\left.\int_{0}^{t} \phi_{z}\right|_{z=0} \mathrm{~d} t
$$

and find its expression in terms of the Fresnel integrals.

