Homework 2

(due at 11:00 am on February 11, 2014)
Problem 1. Using separation of variables, solve the problem of oscillations of a circular membrane of radius r_{0} :

$$
\begin{aligned}
u_{t t}-a^{2} \Delta u & =0, r<r_{0}, a \in \mathbb{R} \\
u(r, \theta, 0) & =f_{1}(r, \theta), u_{t}(r, \theta, 0)=f_{2}(r, \theta), \\
u\left(r_{0}, \theta, t\right) & =0, t>0
\end{aligned}
$$

Here (r, θ) are polar coordinates. Also, prove that $\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$.
Problem 2. Based on the understanding of the D'Alembert solution and the method of characteristics, solve the following problem for semi-infinite string:

$$
\begin{aligned}
u_{t t}-a^{2} u_{x x} & =0, x>0, t>0, a \in \mathbb{R} \\
u(x, 0) & =\phi(x), u_{t}(x, 0)=\psi(x), x>0 \\
u(0, t) & =0, t>0
\end{aligned}
$$

Problem 3. Solve

$$
\begin{aligned}
u_{t t}-a^{2} u_{x x} & =0, x>0, t>0, a \in \mathbb{R} \\
u(x, 0) & =\phi(x), u_{t}(x, 0)=\psi(x), x>0 \\
u(0, t) & =\mu(t), t>0
\end{aligned}
$$

Problem 4. Use the Kirchhoff formula for the solution of the IVP of 3D wave equation to predict the pressure at any point and any time after the explosion of a balloon of radius r_{b} and initial pressure p_{b} at the time instant $t=0$. Note: the pressure obeys the 3 D wave equation.

Problem 5. Use the Hadamard method of descent to deduce the solution of the IVP for the wave equation in \mathbb{R}^{2} from the Kirchhoff formula for the solution of the IVP of 3 D wave equation.

Problem 6. Solve the boundary/initial value problem on a half-line:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}+f(x, t), x \in \mathbb{R}^{+}, t>0, \\
u(x, 0) & =0 ; x \in \mathbb{R}^{+} \\
u(0, t) & =0, t \in[0, T] .
\end{aligned}
$$

Problem 7. Solve the boundary/initial value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0, \\
u(0, t) & =A, u(L, t)=B, t>0, \\
u(x, 0) & =f(x), 0<x<L,
\end{aligned}
$$

where A and B are constants.
Problem 8. Solve the boundary/initial value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}+A e^{-t / \tau}, 0<x<L, t>0 \\
\left.\frac{\partial u}{\partial x}\right|_{x=0} & =0 ;\left.\quad \frac{\partial u}{\partial x}\right|_{x=L}=0, t>0 \\
u(x, 0) & =0,0<x<L
\end{aligned}
$$

where A is a constant.

